

CS 432
Fall 2016

Mike Lam, Professor

Compilers
Advanced Systems Elective

Discussion question

● What is a compiler?

Automated translation

● A compiler is a computer program that
automatically translates other programs from
one language to another

Compiler

Program
in

Source
Language

Program
in

Target
Language

Automated translation

● Compilation vs. interpretation:

Compiler

Program
in

Source
Language

Program
in

Target
Language

Interpreter

Program
in

Source
Language

Results

Discussion question

● Why should we study compilers?

Compilers: a convergent topic

● Data structures

– CS 240

● Architectures and operating systems

– CS 261, CS 450

● Automata and language theory

– CS 327, CS 430

● Graph algorithms

– CS 327

● Software and systems engineering

– CS 345, CS 361

● Greedy, heuristic, and fixed-point algorithms

– CS 452

Reasons to study compilers

● Shows how many areas of CS can be combined to solve
a truly "hard" problem (automated translation)

● Bridges theory vs. implementation gap

– Theory informs implementation

– Applicable in many other domains

● Practical experience with large software systems

– My master copy is currently ~6.3K LOC

● Exposure to open problems in CS

– Many optimization issues are subject to ongoing research

Course goal

● Fundamental question

– "How do compilers translate from a human-readable
language to a machine-executable language?"

● After this course, your response should be:

– "It's really cool! Let me tell you..."

Course design theory

● Big ideas

– E.g., "A compiler is a large software system consisting of a sequence of
phases"

● "Enduring understandings" (stuff you should remember in five years)

– E.g, "Large problems (such as automated translation) can sometimes be
solved by composing existing solutions to smaller problems."

● Learning objectives

– E.g., "Identify and discuss the technical and social challenges of building a
large software system such as a compiler."

● Activities and assignments flow from learning objectives

– E.g., "Draw a diagram illustrating the major phases of a modern compiler."

● Exams reflect activities and assignments

Course format

● Website: https://w3.cs.jmu.edu/lam2mo/cs432/

● Weekly schedule

– Monday: intro lecture

– Tuesday: initial reading & quiz

– Wednesday: mini-lecture and discussion

– Thursday: detailed reading

– Friday: application activity

● Formative vs. summative assessment

● Goal: engaged learning

Course textbook

● Engineering a Compiler, 2nd Edition

– Keith Cooper and Linda Torczon

● Decaf/ILOC references

– PDFs on website

Semester-long project

● Compiler for "Decaf" language

– Implementation in Java

– Maven build system w/ fully-integrated test suite

– Six projects comprised of "pieces" of the full system

● Submission: code + reflection + review

– Code can be written in teams of two
● Benefits vs. costs of working in a team

– Reflection paper must be individual

– Graded code reviews after project submission

Compiler rule #1

● "The compiler must preserve the meaning of
the program being compiled."

– What is a program's meaning?

Intermediate representation

● Compilers encode a program's meaning using
an intermediate representation (IR)

– Tree- or graph-based: abstract syntax tree (AST),
control flow graph (CFG)

– Linear: register transfer language (RTL), Java
bytecode, intermediate language for an optimizing
compiler (ILOC)

=

a *

+

b c

d

load b → r1
load c → r2
add r1, r2 → r3
load d → r4
mult r3, r4 → r5
store r5 → a

Standard compiler framework

● Front end: understand the program (src→IR)

● Back end: encode in target language (IR→targ)

● Primary benefit: easier retargetting to different
languages or architectures

CompilerProgram in
Source

Language A

Program in
Target

Language 1

Front End Back End
IR

Program in
Source

Language B

Program in
Target

Language 1

Modern compiler framework

● Multiple front-end passes

– Lexing/scanning and parsing

– Tree analysis processing

● Multiple middle-end passes

– Local optimizations

– Global optimizations

● Multiple back-end passes

– Instruction selection and scheduling

– Register allocation

– Linking

Compiler

Front
End

Back
End

IR Middle
End

IR

Compiler rule #2

● The compiler should help the programmer in
some way

– What does help mean?

Discussion question

● As a programmer, what would be the most
important design goals for a compiler?

Compiler design goals

● Translate to target language/architecture

● Optimize for fast execution

● Minimize memory use

● Catch software defects early

● Provide helpful error messages

● Run quickly

● Be easily extendable

Differing design goals

● What differences might you expect in compilers
designed for the following applications?

– A just-in-time compiler for running server-side user scripts

– A compiler used in an introductory programming course

– A compiler used to build scientific computing codes to run
on a massively-parallel supercomputer

– A compiler that targets a number of diverse systems

– A compiler that targets an embedded sensor network
platform

Decaf language

● Simple imperative language similar to C or Java

● Example:

// add.decaf - simple addition example

def int add(int x, int y)
{
 return x + y;
}

def int main()
{
 int a;
 a = 3;
 return add(a, 2);
}

$ java -jar decaf-1.0.jar -i add.decaf
5

Before Wednesday

● Readings

– "Engineering a Compiler" (EAC) Ch. 1 (23 pages)

– Decaf reference ("Resources" page on website)

● Tasks

– Complete first reading quiz on Canvas

– Complete source intro survey on Canvas

– Install Java and Maven on your system

– Download the reference compiler from Canvas ("Files")

Upcoming events

● CS senior night

– Wednesday, Sept. 14, 5:00-6:30pm

– Graduation info, job fairs, photos, etc.

– Senior students only

● CS career fair

– Monday, Sept. 22, 10:00am-3:00pm

– 8-10 companies looking for CS majors

– Internships and full-time positions

See you Wednesday

● Have a great semester!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

