

CS 430
Spring 2015

Mike Lam, Professor

Errors and Events

Approaches

● Do nothing

– Worst possible approach!

– No indication that anything has gone wrong

– "Silent propagation" of errors

● Terminate the program

– I.e. delegate error handling to the operating system

– Also rather drastic, but at least it provides some kind of
notification (OS-dependent)

– No opportunity to correct problems

– Most infamous: the segfault

Approaches

● Pass around error handlers

– Extra function parameters (and associated runtime
overhead)

– Confusing and difficult to reason about

– What if you pass the wrong error handler?

● Handle all errors at their source

– Error handling often depends on current context

– Lots of (possibly duplicate) error handling code

Approaches

● Return an error value (in same variable)

– Error value must come from variable domain

– Blurs the line between program logic and program data

– Burden shifts to callers, who must test for error value

● Return an error value (in separate variable)

– Cleaner (separation between logic and data)

– Burden is still on the caller to remember to test for errors

Exception Handling

● Exception: unusual event (possibly erroneous) that
requires special handling

● Exception handler: code unit that processes the
special handling for an exception

● An exception is raised when the unusual event is
detected, and is caught when the exception handler
is triggered

● This framework is called formal exception handling

– First introduced in PL/I (1976)

Benefits of Formal Exceptions

● Less program complexity and clutter; increased
readability

● Standardized handling mechanisms
● Increased programmer awareness

● Decouples exception handling from program logic
● Handler re-use via exception propagation

● More secure due to compiler analysis

Design Issues

● How and where are exception handlers specified?

● What is the scope of exception handlers?

– What information (if any) is available about the error?

● Are there any built-in exceptions? If so, what are they?

● Can programmers define new exceptions?

● How is an exception bound to a handler at runtime?
● Where does execution resume (if at all) after an

exception handler finishes?

Syntax

● Detection

– C++/Java: uses "throw"

– Ruby: uses "raise"

– Should be located as close as possible to the root cause

● Handling

– C++/Java: uses "try/catch" (and "finally" in Java)
● Unhandled exceptions must be declared at the method level in

Java (e.g., "throws IOException")

– Ruby: uses "begin/rescue/else"

– Usually located at the end of a code unit

Exceptions

● C++: Any variable can be thrown
– Each handler catches a particular variable type

– No predefined exceptions

– Exception handling with references is complicated

● Java: Any Throwable object can be thrown
– Each handler catches a particular class

– Built-in exception hierarchy (Error and Exception+descendants)
● Error class instances are considered to be "system-level" and "reasonable" applications should

not worry about them

– "Unchecked" (Error and RuntimeException + descendants) vs. "unchecked" exceptions

● Ruby: A string or any exception can be thrown
– Strings are converted to RuntimeError instances

– Each handler catches a particular class (RuntimeError by default)

– Built-in exception hierarchy (Exception+descendants)

Binding and Continuation

● When an exception is thrown
– Look for matching handler in local scope

● Could be an "else" handler

– If no handler is found, continue through ancestors (usually via
dynamic scoping)

– If no handler is found, abort the program

● When a handler finishes
– If the handler threw another error, handle that

● First execute any "finally" clause if present

– Continue execution after the handler
● First execute any "finally" clause if present

– Changes made by the error handler are visible

Functional Languages

● "Pure" functional handling of errors is very difficult

– Error handling usually involves side effects

● Haskell: usually handled with monads

– Encapsulate errors and data inside a single structure

– Syntax becomes rather complicated

data Exceptional e a =

 Success a

 | Exception e

 deriving (Show)

Examples

● See handout

Language Debate

● Are formal exceptions any different from GOTO
statements? If so, are they just as dangerous?
If not, how are they different?

Language Debate

● Are formal exceptions any different from GOTO
statements? If so, are they just as dangerous?
If not, how are they different?

– Basic different: formal exceptions are more
structured

● More rules and restrictions governing their uses

– Language facilities provide (mostly) safe usage

– Care should be taken to limit their complexity
● Main issue: proximity of detection and handling

Event Handling

● Similarity between error handling and event
handling

– Both indicate asynchronous events that must be
handled by the program

● Primary difference: events are "normal" while
errors are "unusual"

● Another difference: events are usually handled
in a separate thread

– Keeps the program feeling "responsive"

Event Loops

● Event loop: code that explicitly receives and handles events

● Traditional form:
 while(GetMessage(&Msg) > 0)

 {

 TranslateMessage(&Msg);

 DispatchMessage(&Msg);

 }

● Often run in its own thread

● Requires explicit dispatch routine
– Can become extremely complex and unwieldy

Observer Pattern

● Cleaner solution: Observer pattern (OOP)

– Single event thread, implemented in language runtime
● Dispatches events to relevant objects

– Objects maintain a list of "observers"/"listeners"

– Upon receiving an event, the object passes it to a
designated routine in every registered observer

– Optional improvement: anonymous functions or event
handling classes

● Very similar to lambda functions or closures!

Example
import java.awt.event.*;
import javax.swing.*;

public class EventEx1 extends JFrame {

 private class ButtonHandler implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 JOptionPane.showMessageDialog(null, "Clicked!");
 }
 }

 public EventEx1() {

 JButton myButton = new JButton("Click me!");
 myButton.addActionListener(new ButtonHandler());

 getContentPane().add(myButton);
 pack();
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String[] args) {
 (new EventEx1()).setVisible(true);
 }
}

Example

import java.awt.event.*;
import javax.swing.*;

public class EventEx2 extends JFrame {

 public EventEx2() {

 JButton myButton = new JButton("Click me!");
 myButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 JOptionPane.showMessageDialog(null, "Clicked!");
 }
 });

 getContentPane().add(myButton);
 pack();
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String[] args) {
 (new EventEx2()).setVisible(true);
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

