

CS 430
Spring 2015

Mike Lam, Professor

Concurrency

http://adit.io/posts/2013-05-11-The-Dining-Philosophers-Problem-With-Ron-Swanson.html

Concurrency

● Instruction-level concurrency
– “Hidden concurrency” - instruction pipelining and prefetching

– Mostly an architecture and compiler design issue (CS 456/480)

● Statement-level concurrency
– Often enabled by language features (CS 430)

● Unit (subprogram)-level concurrency
– Sometimes enabled by language features (CS 430)

– Often a distributed/parallel systems issue (CS 470)

● Program-level concurrency
– Mostly an OS or batch scheduler issue (CS 450/470)

Scalability

● An algorithm is scalable if the speed of execution increases
when more processors are available

– Strong scaling: same data, less time

● Alternately: an algorithm is scalable if the availability of more
processors allows for efficient processing of larger datasets

– Weak scaling: same time, more data

● Amdahl's Law: scalability is limited by how much of the
program is non-parallelizable

– Modern systems sometimes experience anomalies that violate
Amdahl's Law

History

● 1950s: special-purpose I/O or graphics processors

● 1960s: multiple complete processors
● 1970s: vector processors

● 1980s: computing clusters
● 1990s-2000s: rise of multicore consumer machines

and graphical processing units (GPUs)

● 2010s: hybrid CPU/GPU architectures
● Future: low-cost, low-power

Categories

● Single-Instruction, Multiple-Data (SIMD)

– Vector processors

– GPUs

– SSE/AVX instructions on x86

● Multiple-Instruction, Multiple-Data (MIMD)

– Multicore processors

– Distributed computing

Concepts

● Physical vs. logical concurrency

– Is the concurrency actually happening on the hardware
level, or are executions being interleaved?

– Users and language designers don't care

– Language implementers and OS designers do care

Concepts

● Single threaded vs. multi threaded

– Thread: sequence of control flow points

– Coroutines are single threaded (quasi-concurrent)

– Multi-threaded programs may still be executed on a single
CPU via interleaving

● Synchronous vs. asynchronous

– Synchronous tasks must take turns and wait for each other

– Asynchronous tasks may execute simultaneously

Concepts

● Task/process/thread: program unit that supports
concurrent execution

– Typically, a process may contain multiple threads

– All threads in a process share a single address space

– Textbook: heavyweight = process, lightweight = thread

– Some OSes support lightweight processes

Scheduling

● Scheduler: a system program that manages the sharing of
processors between tasks
– Priority-based scheduling

– Round-robin scheduling

– Real-time scheduling

● Task states

– New: created but execution has not yet begun

– Ready: not currently executing, but may be started
● Often stored in a ready queue

– Running: currently executing

– Blocked: running, but waiting on an event (often I/O)

– Dead: no longer active

Concepts

● Liveness: a program executes to completion

● Deadlock: loss of liveness due to mutual waiting

– E.g., dining philosophers!

● Race condition: concurrency outcome depends on
interleaving order

– Example: Two concurrent executions of bump()

def bump(x)
 tmp = $counter (1)
 tmp += x (2)
 $counter = tmp (3)
end

OK:
1
2
3
4
5
6

BAD:
1
4
2
5
3
6

def bump(x)
 tmp = $counter (4)
 tmp += x (5)
 $counter = tmp (6)
end

Concepts

● Synchronization: mechanism that controls task
ordering

– Cooperative synchronization: ordering based on
inter-task dependencies

● E.g., Task A is waiting on task B to finish an activity
● Common issue: producer/consumer problem

– Competition: ordering based on resource contention
● E.g., Task A and Task B both need access to a resource
● Common issue: file or CPU contention, dining

philosopher problem

Synchronization

● Semaphore: guarding mechanism (1965)

– Integer (n = “empty slots”) and a task queue

– Produce
● if n > 0: write, decrement n, notify consumers
● else: wait in producer queue

– Consume
● if n < nSlots: read, increment n, notify producers
● else: wait in consumer queue

– Binary semaphore: single “slot” (mutex)

– Issue: burden of correct use falls on the programmer

Synchronization

● Monitors: encapsulation mechanism (1974)

– Abstract data types for concurrency

– Handles locking and corresponding thread queue

– Shifts responsibility to language implementer and runtime
system designer

– Generally considered safer

● Message passing (1978)

– Fairness in communication

– Synchronous vs. asynchronous

– Can be difficult to program and expensive

– Necessary in distributed computing

Theory

● Actor model (1973)
– Actors respond to messages by sending messages and creating new

actors

● Communicating sequential processes (CSP) (1978)
– Events and processes, choice and interleaving

– Message passing via channels

● π-calculus
– Concurrency, communication (input/output), and replication, restriction

● Tuple spaces (JavaSpaces, Linda)
– Data-centric coordination with shared memory

– Operations: “in” (read and remove), “out” (write), “rd” (read), “eval” (new
process)

CSP and π-calculus

Language Support

● C/C++/Fortran
– Pthreads, OpenMP, MPI

● Java

– Threads, synchronized keyword and wait/notify

● Haskell

– Control.Parallel and Control.Concurrent

● High-Performance Fortran (HPF)

– DISTRIBUTE and FORALL

● Chapel

– coforall, cobegin, and domains

High-Performance Fortran

● Motivation: higher abstractions for parallelism

– Predefined data distributions and parallel loops

● Development

– Proposed 1991 w/ intense design efforts in early 1990s

– Standardized in 1993 and later in 1996

● Problems

– Poor support for non-standard data distributions

– Immature compilers and no reference implementation

– Poor code performance, difficult to optimize and tune

– Slow uptake among the HPC community

● Legacy

– Profound influence on later efforts

– Examples: OpenMP, X-10, Fortress and Chapel

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

