

CS 430
Spring 2015

Mike Lam, Professor

Abstraction and Object-Oriented Programming

Abstraction

● Fundamental concept in CS

● Textbook definition: "a view or representation of an
entity that includes only the most significant attributes"

● Mathematical notion: "equivalence classes"

● Practical reality: the first line of defense against
software complexity!

● Key: finding the correct level of abstraction

Types of abstraction

● Process abstraction

– Structured (block) syntax

– Subprograms and modules

● Data abstraction

– Abstract data types and interfaces
● Polymorphism and generics

– Encapsulation and information hiding
● Classes and objects
● Inheritance

Abstract data types

● An ADT is basically an interface
– Type specifier for the general category

– List of supported operations
● Common operations: constructor, accessors, iterators, destructors

– Not specified: underlying representation

● Examples

– List: append(value), get(index), remove(index)

– Stack: push(value), pop

– Set: add(value), isMember(value), union(otherSet)

– Map: store(key, value), lookup(key)

Design issues

● Information hiding: should underlying data be exposed?
– Levels: public, private, protected

– Public fields vs. getters and setters

– Convenience/writability vs. safety and extensibility

● Polymorphism: is parameterization possible?
– Specifying parameters

– Specifying restrictions on the parameters

– Power/expressivity vs. readability

● Encapsulation: how is related code and data collected?
– Header files, namespaces, packages, modules, etc.

– Modularity and readability

– Extensibility and inheritance

History of OOP

● Simula: data abstractions for simulation and modeling

● Smalltalk: objects and messages

● C++: originally “C with classes”

● Most modern languages have some form of OOP

– Abstract data types

– Inheritance

– Dynamic binding

Object-oriented programming

● Inheritance

– Original motivation: code re-use

– Parent/superclass vs. child/derived/subclass

– Overriding methods

– Single vs. multiple inheritance (simplicity vs. power)

– Abstract methods and classes

– Non-overridable methods: "final" methods in Java

● Dispatch
– Static dispatch: all method calls can be resolved at compile time

– Dynamic dispatch: polymorphic method calls
● "virtual" methods in C++

● Non-object types in OOP languages
– "Primitive" or "intrinsic" types

Object-oriented implementation

● Pure vs. hybrid (is everything an object?)

● Class instance record

– List of member variables for classes

– Subclass CIR is a copy of the parents' with (potentially) added
fields

● Virtual method table

– List of dynamically-dispatched methods w/ pointers to
implementations

– Often implemented directly (no CIR) with a single VPTR
member field in objects

Design issues

● Languages:

– C++

– Java

– Ruby

Abstraction in C++

● Classes and structs
● Header file and implementation file
● Visibility: public (default for structs) or private (default for classes)

– "Friend" functions for private access outside class

● Stack or heap allocation
● Manual memory management: constructors and destructors
● All forms of polymorphism (parametric via templates)
● Multiple inheritance
● Namespaces for naming and encapsulation

Abstraction in Java

● Classes similar to C++
● Single inheritance tree (rooted at Object)

● No stack allocation (everything on heap)
● Automatic memory management
● Access modifiers required

– Public, private, protected, package

● No separate header file
● All forms of polymorphism (parametric via generics)
● Packages for naming and encapsulation
● Interfaces for pseudo-multiple inheritance

Abstraction in Ruby

● Dynamic classes

● Members can be added/removed at run time

● Multiple definitions of a single class allowed

● Keywords for function visibility (public by default)

● All data is private

– "@" symbol for instance variables

– Attributes accessed through methods

● Polymorphism via dynamic types; no overloading

● Modules for encapsulation and multiple inheritance (mixins)

Announcements

● Talk Wed April 15 (12:15pm, nTelos Room)

– Graphics and high-performance computing

– Dr. Amitabh Varshney

● No office hours tomorrow (4/15) or next Mon-
Tue (4/20-4/21)

● Mark your calendars and plan to attend class
4/28 (final presentations) and 4/30 (review)

