

CS 430
Spring 2015

Mike Lam, Professor

Subprograms and Activation

Warm-up Activity

● What does the following C++ program print?

#include <stdio.h>
int foo(int x, int *y, int &z) {
 x = 4; *y = 5; z = 6;
 printf("%d %d %d\n", x, *y, z);
 return x + *y + z;
}
int main() {
 int a, b, c, d;
 a = 1; b = 2; c = 3;
 d = foo(a, &b, c);
 printf("%d %d %d %d\n", a, b, c, d);
}

Subprograms

● General characteristics

– Single entry point

– Caller is suspended while subprogram is executing

– Control returns to caller when subprogram
completes

● Procedure vs. function

– Functions have return values

Subprograms

● New-ish terms

– Header: signaling syntax for defining a subprogram

– Parameter profile: number, types, and order of parameters

– Signature/protocol: parameter types and return type(s)

– Prototype: declaration without a full definition

– Referencing environment: variables visible inside a
subprogram

– Call site: location of a subprogram invocation

Parameters

● Formal vs. actual parameters
– Formal: parameter inside subprogram definition

– Actual: parameter at call site

● Semantic models: in, out, in-out

● Implementations (key differences are when values are copied
and exactly what is being copied)

– Pass-by-value (in, value)

– Pass-by-result (out, value)

– Pass-by-copy (in-out, value)

– Pass-by-reference (in-out, reference)

– Pass-by-name (in-out, name)

Parameters

● Pass-by-value
– Pro: simple

– Con: costs of allocation and copying

– Often the default

● Pass-by-reference
– Pro: efficient (only copy 32/64 bits)

– Con: hard to reason about, extra layer of indirection, aliasing issues

– Often used in object-oriented languages

● Pass-by-name
– Pro: powerful

– Con: expensive to implement, very difficult to reason about

– Rarely used!

Example

 foo(a,b,c,d):
1: a = a + 1 # a is passed by value
2: b = b + 1 # b is passed by copy
3: c = c + 1 # c is passed by reference
4: d = d + 1 # d is passed by name

 x = [1,2,3,4]
 y = 2
5: foo(x[0],x[1],y,x[y])

● Trace x, y, a, b, c, and d after each numbered line:

Example

● Trace x, y, a, b, c, and d after each numbered line:

 foo(a,b,c,d):
1: a = a + 1 # a is passed by value
2: b = b + 1 # b is passed by copy
3: c = c + 1 # c is passed by reference
4: d = d + 1 # d is passed by name

 x = [1,2,3,4]
 y = 2
5: foo(x[0],x[1],y,x[y])

 x = [1,2,3,4] y=2 a=1 b=2 c=&y d=x[y]
1: x = [1,2,3,4] y=2 a=2 b=2 c=&y d=x[y]
2: x = [1,2,3,4] y=2 a=2 b=3 c=&y d=x[y]
3: x = [1,2,3,4] y=3 a=2 b=3 c=&y d=x[y]
4: x = [1,2,3,5] y=3 a=2 b=3 c=&y d=x[y]
5: x = [1,3,3,5] y=3 a=2 b=3 c=&y d=x[y]

Other Design Issues

● How are formal/actual parameters associated?

– Positionally, by name, or both?

● Are parameter default values allowed?

● Are method parameters type-checked?

– Statically or dynamically?

Other Design Issues

● Are local variables statically or dynamically allocated?

● Can subprograms be passed as parameters?

– How is this implemented?

– Shallow/dynamic, deep/static, or ad-hoc referencing
environment?

● Can subprograms be nested?

● Can subprograms be polymorphic?

– Ad-hoc/manual, subtype, or parametric/generic?

● Are function side effects allowed?

● Can a function return multiple values?

Misc. Topics

● Macros

– Call-by-name, “executed” at compile time

● Closures

– A nested subprogram and its referencing
environment

● Coroutines

– Co-operating procedures

Subprogram Activation

● Call semantics:
– Save caller status

– Compute and save parameters

– Save return address

– Transfer control to callee

● Return semantics:
– Save return value(s) and out parameters

– Restore caller status

– Transfer control back to the caller

● Activation record: data for a single subprogram execution
– Local variables

– Parameters

– Return address

– Dynamic link

x86 Stack Layout

● Address space

– Code

– Static

– Stack

– Heap

● Instruction Pointer (IP)
– Current instruction

● Stack pointer (SP)

– Top of stack

● Base pointer (BP)
– Start of current frame

stack
growth

x86 Calling Conventions
Prologue:
 push %ebp ; save old base pointer
 mov %esp, %ebp ; save top of stack as base pointer
 sub X, %esp ; reserve X bytes for local vars

Within function:
 +OFFSET(%ebp) ; function parameter
 -OFFSET(%ebp) ; local variable

Epilogue:
 <optional: save return value in %eax>
 leave ; mov %ebp, %esp
 ; pop %ebp
 ret ; pop stack and jump to popped address

Function calling:
 <push parameters>
 <push return address>
 <jump to fname>
 <pop parameters>

x86_64 "red zone" (128 bytes reserved below SP)
 - optimization: do not explicitly build frame (no SP manipulation)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

