

CS 430
Spring 2015

Mike Lam, Professor

Expressions and Control Structures

x = a+b+c

y = sin(x)

E = m*(c**2)

Warm-up Exercises

● What are the values of a, b, and c after each Java
statement?

1) a = 2*-3;

2) b = 4 + 3 * 2;

3) c = b-3 * a;

4) a = 3;

5) b -= 5 - a++;

6) c = a+++4-(--b);

Expressions

● Expression: specification of computation

– Form/syntax expressed using BNF grammars

– Operations

– Operands

– Parentheses

– Function calls

Expressions

● Operators

– Unary vs. binary vs. ternary

– Infix vs. prefix vs. postfix

– Precedence

– Associativity (left or right)

– Overloading

– Arithmetic vs. boolean

– Short-circuit boolean operators

Expressions

● Operands

– Evaluation order

– Type conversions
● Implicit vs. explicit
● Narrowing vs. widening

– Errors
● Overflow and underflow
● Division by zero
● Floating-point issues (e.g., NaN, subnormal)

Expressions

● Parentheses

– Explicit precedence and associativity

– Tuple creation

● Function calls

– Side effects and referential transparency

Assignment Statements

● Symbol and ambiguity with equality operator
– "=" vs. ":=" vs. "==" vs. "←"

– Assignments as expressions; good idea?

● Simple assignments
● Conditional targets (ternary LHS)

– (n > 5 ? a : b) = n*2

● Compound assignments
– Shortened forms of an assignment: "+=" and "++"

● Multiple assignments

– a,b = c/2,c%2 a,b = b,a

Control Structures

● Control flow path: sequence order of executed instructions
● Control structure: control statement and its associated

flow path

● Selection statements (e.g., if/then/else, switch/case)

– Choose between alternative control flow paths

● Iteration statements (e.g., do, while, for, until)

– Repeatedly execute a control flow path

● How many kinds of control statements?
– Many: higher expressivity

– Few: higher readability, learnability, and orthogonality

Minimally-Sufficiency Constructs

● Böhm and Jacopini (1966)

– “Structured program theorem”

– 1) Sequencing, 2) two-way logical selection, and 3)
logical iteration

– Can implement ALL flowchart-representable
programs

– Alternatively: a selectable goto statement

Selection Structures

● Two-way selection (if/then)

– Inclusion of "else" clause

– Blocks delimited by braces, keywords (e.g., "begin", "end") or
indentation

– Nesting issues

● Multiple selection (switch/case)

– Form ("if/elseif/else" vs. "switch/case")

– Case value types

– Multiple execution

– Fallthrough

– Default values

– Efficient implementation using jump tables

Iteration Structures

● Basic questions:
– How the iteration is controlled: logic vs. counter

● Counter loop parameters: loop variables, initial/terminal values, step sizes
● Counter variable in scope outside loop? (no, starting with Ada)

– Where the control mechanism appears in the loop statement: pre vs. post
vs. user-defined

● Examples:
– While loop: logic pre-test

– Until loop: logic post-test

– For loop: counter

– Iterator-based loops: variant of counters

● Functional languages: recursion instead of iteration

Minimally-Sufficient Constructs

● Use only the following constructs:
– S → S; S
– S → if (B) { S } else { S }
– S → while (B) { S }
– S → <assignment>
– B → <boolean expression>

● Rewrite the following Ruby code:

3.times do
 x = x * 2
end

until a >= b
 a += 5
end

if x > 90 then
 g = 'A'
elsif x > 80 then
 g = 'B'
elsif x > 70 then
 g = 'C'
else
 g = 'D'
end

1.upto(10) do |i|
 y = y + i
end

case (n % 3)
when 0
 d = 1
when 1
 d = 2
when 2
 d = 3
end

Minimally-Sufficient Constructs

if statement: if (E) B1

 << E code >>

 if E goto l1

 goto l2

 l1:

 << B1 code >>

 l2:

Minimally-Sufficient Constructs

if statement: if (E) B1 else B2

 << E code >>

 if E goto l1

 goto l2

 l1:

 << B1 code >>

 goto l3

 l2:

 << B2 code >>

 l3:

Minimally-Sufficient Constructs

while loop: while (E) B

 l1: ; CONTINUE target

 << E code >>

 if E goto l2

 goto l3

 l2:

 << B code >>

 goto l1

 l3: ; BREAK target

Minimally-Sufficient Constructs

for loop: for V in E1, E2 B

 << E1 code >>

 << E2 code >>

 V = E1

 l1:

 t1 = V >= E2

 if t1 goto l2

 << B code >>

 V = V + 1 ; CONTINUE target

 goto l1

 l2: ; BREAK target

Guarded Commands

● Maximum of (x,y):

– if x >= y → max := x

– [] y >= x → max := y

– fi

● Sorting four integers (q1, q2, q3, q4):
– do q1 > q2 → temp := q1; q1 = q2; q2 := temp;

– [] q2 > q3 → temp := q2; q2 = q3; q3 := temp;

– [] q3 > q4 → temp := q3; q3 = q4; q4 := temp;

– od

Language Design

● Can control structures have multiple entries?

– General answer: No!

– Increase in flexibility/expressiveness is small relative to
decrease in readability

● Can control structures have multiple exits?

– For most procedural languages: yes

– Same as "should goto be included?"

Greatest Argument in PL History

● "Should languages provide a goto statement?"

– Pro: extremely powerful construct – high expressiveness and writability

– Against: without restrictions, can make programs very difficult to
understand – low readability and maintainability

● Classic 1968 CACM letter by Edsger Dijkstra: "Go To Statement
Considered Harmful"
– Widely misunderstood

– Original title: "A Case Against the Goto Statement"

– Criticized excessive use of goto

– Consensus: structured control flow is safer
● Use control structures, exceptions, or tail recursion instead
● Only C descendants tend to have goto statements these days

Guarded Commands

● Dijkstra (1975): guarded selection and iteration
statements: if/fi and do/od

● More than one boolean condition may be true

● Control flow path is chosen non-deterministically out of
the available true conditions

● Pro: some constructs are more elegant and easily
proven correct

● Con: greatly-increased complexity and lowered
readability

Guarded Commands

● Maximum of (x,y):

– if x >= y → max := x

– [] y >= x → max := y

– fi

● Sorting four integers (q1, q2, q3, q4):
– do q1 > q2 → temp := q1; q1 = q2; q2 := temp;

– [] q2 > q3 → temp := q2; q2 = q3; q3 := temp;

– [] q3 > q4 → temp := q3; q3 = q4; q4 := temp;

– od

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

