
  

CS 430
Spring 2015

Mike Lam, Professor

Data Types and Type Checking



  

Type Systems

● Type system

– Rules about valid types, type compatibility, and how 
data values can be used

● Benefits of a robust type system

– Earlier error detection

– Better documentation

– Increased modularization



  

Data Types

● Data type: collection of data values and their 
associated operations

– Descriptor: collection of a variable's attributes, including its 
type

● Primitive data types

– Integer, floating-point, complex, decimal, boolean, character

● User-defined data types

– Structured: arrays, tuples, maps, records, unions

– Ordinal: enumerations, subranges



  

Data Types

● Primitive data types

– Integer: signed vs. unsigned, two's complement, arbitrary sizes
● Tradeoff: storage/speed vs. range

– Floating-point: IEEE standard (sign bit, exponent, significand), 
precision, rounding error

● Tradeoff: precision vs. range

– Complex: pairs of floats (real and imaginary)

– Decimal: binary coded decimal

– Boolean: 0 (false) or 1 (true); usually byte-sized

– Character: ASCII, Unicode, UTF-8, and UTF-16 (variable-length), 
UTF-32 (fixed-length)



  

IEEE Floating Point

032 16 8 4

Significand (23 bits)Exponent (8 bits)

Single Precision

03264 16 8 4

Significand (52 bits)Exponent (11 bits)

Double Precision

– Sign bit (s)

– Exponent (e)

– Significand (m)

03264 16 8 4

0x4005000000000000

Representing 2.625:

03264 16 8 4

0x3FB999999999999A

Representing 0.1:

Value:

(-1)s·m·2e



  

User-Defined Data Types

● Structured

– Arrays and lists: sequences of elements, mapping from integers to 
elements

– Tuples: fixed-length sequence of elements

– Associative arrays: mapping from keys to values, hashing

– Records: (name, type) pairs, dot notation, a.k.a. "structs"

– Unions: different types at runtime, tag/discriminant, safety issues

● Ordinal (value <=> integer mapping)

– Booleans and characters

– Enumerations: subset of constants

– Subranges: contiguous subsequence of another ordinal type



  

Arrays and Lists

● Arrays
– Usually homogeneous (with fixed element width)

– Usually fixed-length

– Usually static or fixed stack/heap-dynamic

– Calculating index offsets: base + index * (element_size)

● Lists

– Sometimes heterogeneous

– Usually variable-length

– Usually stack-dynamic or heap-dynamic

– In functional languages: usually defined as  head:tail



  

Multidimensional Arrays

● Multidimensional arrays

– True multidimensional vs. array-of-arrays

– Row-major vs. column-major

– Rectangular vs. jagged

– Calculating index offsets

0 1 2

4 5 6

8 9 10

3

7

11

0 3 6

1 4 7

2 5 8

9

10

11

0 1 2

4 5 6

8 9 10

3

7

11

●

●

●

Row-major Row-major arrray-of-arrays Column-major

Ragged



  

Character Strings

● Often stored as arrays of characters

● Common operations: length calculation, concatenation, slicing, 
pattern matching

● Questions:
– Should the language provide special support?

– Should string length be static or dynamic?
● How should the length be tracked?

– Should strings be immutable?

● Tradeoffs: speed vs. convenience

● Buffer/length overruns are a common source of security 
vulnerabilities



  

Pointers and References

● Pointer: memory address or null / nil / 0
– Example of a nullable type

● Reference: object or value in memory
– Also can be nullable

– Different semantics than pointers

– Strictly safer than pointers

● Implementation

– Allocation/initialization

– Dereferencing

– Arithmetic (allowed for pointers, not references)



  

Pointers and References

● Design issues
– Scope and lifetime of pointer and associated value

– Type restrictions (must match? void* allowed?)

– Language support (pointers, references, or both?)

● Problems
– Dangling pointer: value has been deallocated

● Null pointer dereference
● Debuggers (e.g., gdb) can help!

– Memory leaks: value is no longer accessible
● Memory remains allocated
● Memory analysis tools (e.g., valgrind) can help!



  

Garbage Collection

● Alternative to explicit reference deallocation
● Reference counters

– Track # of references to an object

– Deallocate object when counter hits zero

● Mark-and-sweep
– Pause the application (sometimes unnecessary)

– Initialize indicators for all memory cells to "unmarked"

– Mark reachable heap memory cells by following pointers from stack and 
static memory

– Deallocate unmarked cells



  

Polymorphism

● Object-oriented inheritance
– Example of subtypes

● Parameterized functions
– Uses generic type variables

– Example: generic list functions in Haskell
● E.g.,  head : [a] → a

● Abstract data types
– Models of generic data structure behavior

– Can use parameterized types
● E.g., a  queue<float>  or  queue<int>
● Examples: C++ templates and Java generics



  

Type Checking

● Type system
– Rules about how data values can be used

● Type compatibility
– Operators defined for types

– All operand types are equivalent
● Name vs. structure equivalence

● Type conversions
– Widening vs. narrowing (may cause information loss)

– Implicit: coercion, e.g.,  float x = 5;

– Explicit: casting, e.g.,  int x = (int)3.14;



  

Type Checking

● Type checking

– Ensure that operations are supported by types of 
the operation's operands

– Ensure that operands are of compatible types

– Violations are called type errors

– Usually, type errors are considered to be bugs
● Sometimes are reported only as warnings



  

Type Checking

● Explicit vs. implicit typing

– Explicit: types required in declaration
● E.g.,  int x = 5; float y = 4.2;

– Implicit: types not required in declaration
● E.g.,  x = 5; y = 4.2;
● Types are bound at assignment
● However, these types can often be inferred statically

– Tradeoff: readability vs. writability and 
expressiveness



  

Type Checking

● Static vs. dynamic type checking

– Static: compile time (checked by compiler)
● E.g., C, Haskell

– Dynamic: run time (checked by runtime system)
● E.g., Ruby, Python
● “Duck typing” is a special form of dynamic typing

– Hybrid: some static, some dynamic
● E.g., C++, Java

– Tradeoff: overhead vs. flexibility



  

Type Checking

● Strong vs. weak typing

– Strong typing: all type errors are detected

– Tradeoff: safety vs. expressiveness

– Terms often used somewhat loosely

● Evidence of strong typing

– Static type checking

– Type inference (even for implicit typing!)

● Evidence of weak typing

– Dynamic type checking

– Type conversions 

– Pointer or union types



  

Formal Type Theory

● Type systems expressed as a set of type rules

– Each rule has zero or more premises and a conclusion

– Apply rules recursively to form proof trees

– Curry-Howard correspondence (“proofs as programs”)

– Can be applied to typed lambda calculus

A ⊢  n : int A ⊢  x : t

x : t ∊  A

A ⊢  λx:t.e : t → t'

A, x : t ⊢  e : t'

A ⊢  e e' : t'

A ⊢  e : t → t' A ⊢  e' : t

TInt

TFun

TVar

TApp



  

Formal Type Theory

A ⊢  (λx:int.+ x 3) 4 :  

A = { + : int → int → int }

A ⊢  (λx:int.+ x 3) :  A ⊢  4 :  

B ⊢  + x 3 :  

B ⊢  3 :  

B ⊢  + :  

B ⊢  + x :  

B ⊢  x :  

B = A, x : int

TApp

TApp

TApp

x :       ∊  B
TVar

TFun

+ :              ∊ BTVar

A ⊢  n : int A ⊢  x : t

x : t ∊  A

A ⊢  λx:t.e : t → t'

A, x : t ⊢  e : t'

A ⊢  e e' : t'

A ⊢  e : t → t' A ⊢  e' : t

TInt TFunTVar TApp



  

Formal Type Theory

A ⊢  (λx:int.+ x 3) 4 : int

A = { + : int → int → int }

A ⊢  (λx:int.+ x 3) : int → int A ⊢  4 : int

B ⊢  + x 3 : int

B ⊢  3 : int

B ⊢  + : i→i→i

B ⊢  + x : int → int

B ⊢  x : int

B = A, x : int

TApp

TApp

TApp

x : int ∊  B
TVar

TFun

+ : i→i→i ∊  BTVar

A ⊢  n : int A ⊢  x : t

x : t ∊  A

A ⊢  λx:t.e : t → t'

A, x : t ⊢  e : t'

A ⊢  e e' : t'

A ⊢  e : t → t' A ⊢  e' : t

TInt TFunTVar TApp



  

Announcements

● Unit 8 Online Quiz

– Due next Monday (3/23)

● TAP next Tuesday (3/24)

– In lieu of a midterm feedback survey

● Midterm grading goal: next Tuesday

– Contact me TODAY if you are considering 
withdrawing and would like an informal grade 
assessment


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

