

CS 430
Spring 2015

Mike Lam, Professor

Variables

Variables

● What is a variable?

Variables

● Variable: an abstraction of memory cells

– Most languages have variables

– However, they are NOT essential for computation!

● Six main attributes/properties:

– Name

– Address

– Value

– Type

– Lifetime

– Scope

Binding

● Binding: association between an attribute and an
entity

– Begins at binding time

– Static bindings begin before the program is executed and
do not change during execution

– Dynamic bindings may begin or change during execution

● We will discuss bindings for five of the major variable
attributes

– Lifetime bindings are usually a combination of other
attributes

Name

● Name – string of characters that serves as an identifier

– Case sensitive?

– Reserved words?

– Special characters with meanings? ($ and @ in Ruby)

– Standards or conventions?

● Keyword vs. reserved word

– Keyword: string of characters with special meaning

– Reserved word: string of characters that cannot be used as a variable
name

● Name bindings are usually static
– Do all variables have a name?

Address

● Address: location of a variable

– Sometimes called l-value

● Aliases: multiple variables with an identical address

● Address bindings may be static or dynamic

Value

● Value: contents of the memory associated with a variable
– Sometimes called r-value

● Value bindings are usually dynamic
– Otherwise, they wouldn't be "variable"

– Important exception: constants

Type

● Type: range of values a variable can store
– And the operations that can be applied to it

● Common types:
– Integer

– Floating-point

– Character-based

– Union or composite structure (object)

● Implicit vs. explicit
● Static vs. dynamic

– "Duck" typing

● Type inference

Lifetime

● Lifetime: duration of address binding

● Common lifetimes:

– Static

– Stack dynamic

– Explicit heap dynamic

– Implicit heap dynamic

● Allocation: explicit or implicit?

● Deallocation: explicit or implicit?

Scope

● Scope: program range where a variable is visible

● Local vs. global

● Static vs. dynamic

– Code structure vs. call structure

– Dynamic scoping is very rare (Perl example)

● Impact of block structures

– Ancestor scopes

● Often related to lifetime

Referencing Environment

● Referencing environment: all variables and constructs
visible from a program statement

– Local scope plus ancestor scopes

Case studies

● Cases

– Ruby class instance variables

– Java "static final" class variables

– C++ "new"-allocated object

– C loop index variable

● Questions

– What is the name, address, value, type, lifetime, and
scope? Are they static or dynamic?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

