

CS 430
Spring 2015

Mike Lam, Professor

Parsing

Syntax Analysis

● We can now formally describe a language's syntax

– Using regular expressions and BNF grammars

● How does that help us?

Syntax Analysis

● We can now formally describe a language's syntax

– Using regular expressions and BNF grammars

● How does that help us?

It allows us to program a computer to recognize and

translate programming languages automatically!

Parsing

● General goal of syntax analysis: turn a program into a form
usable for automated translation or interpretation
– Report syntax errors (and optionally recover)

– Produce a parse tree / syntax tree

 while b != 0:
 if a > b:
 a = a − b
 else:
 b = b − a
 return a

Image taken from Wikipedia

Languages

Chomsky Hierarchy of Languages

Regular

Context-free

Context-sensitive

Recursively enumerable

Finite state machine

Pushdown automaton

Linear bounded automaton

Turing machine

Deciding machine

Most useful
for PL

● Language:
– L = { set of sequences of characters

from alphabet Σ }

– Colloquially: "set of all valid
sentences in the language"

Challenge: Write a regular
expression to check for
matched parentheses.

Valid: "", "()", "(())", "()()"
Invalid: "(", ")", "())", "(()()"

Syntax Analysis

● 1) Lexical analysis
– Scanning: text → tokens

– Regular languages (described by regular expressions)

● 2) Syntax analysis
– Parsing: tokens → syntax tree

– Context-free languages (described by context-free grammars)

● Often implemented separately
– For simplicity (lexing is simpler), efficiency (lexing is expensive), and

portability (lexing can be platform-dependent)

● Together, they represent the first "phase" of compilation or
interpretation
– Referred to as the "front end" of a compiler

Compilation

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source
code

Token
s

Syntax
tree

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine
code

Lexin
g

Parsing Code
Generation

& Optimization

"Front
end"

"Back
end"

Lexical Analysis

● Performed automatically by state machines (finite state automata)
– Set of states with a single start state

– Transitions between states on inputs (+ implicit dead states)

– Some states are final or accepting

● Deterministic vs. non-deterministic
– Non-deterministic: multiple possible states for given sentence

– One edge from each state per character (deterministic)

– Multiple edges from each state per character (non-deterministic)

– Empty or ε-transitions (non-deterministic)

a

Regex: a

Lexical Analysis

● Examples:

a

b

a b

a

a|b

a

b

ab

Lexical Analysis

● Examples:

a

b

ab

a b

a*

a

a(bc|c*)

aa*|b

a|b

ab*

a

b

Lexical Analysis

● Examples:

a

b

ab

a b

a*

a

a b
a(bc|c*)

c

c

c

a

b

aa*|b

a

a|b

ab*

a

b

Parsing

● Implemented using stacks

– Formally: pushdown automata

● Two major types of parsers:

– Recursive-descent parsers
● Sometimes called top-down parsers
● Left to right token input, Leftmost derivation (LL)

– Shift/reduce parsers
● Sometimes called bottom-up parsers
● Left to right token input, Rightmost derivation (LR)

Recursive Descent (LL) Parser

A → # B & B #

 | # B #

B → x | y

parseA():

 consume('#')

 parseB()

 if peek() == '&':

 consume('&')

 parseB()

 consume('#')

parseB():

 if peek() == 'x':

 consume('x')

 elif peek() == 'y':

 consume('y')

 else:

 error "Bad input: "

 + peek()

Assuming the following methods are implemented:

bool consume(char c)
 Consumes a character of input and verifies that it matches the
given character (returns "false" if it does not).

char peek()
 Returns a copy of the next character of input to be consumed, but
does not consume it.

Recursive Descent (LL) Parsing

● Collection of parsing routines that call each other

– Uses a stack implicitly (call stack)

– Usually one routine per non-terminal in the grammar

– Each routine builds a subtree of the parse tree associated with
the corresponding non-terminal

● Advantages
– Relatively simple to write by hand

● Disadvantage

– Doesn't work with left-recursive grammars and non-pairwise-
disjoint grammars

● This can sometimes be fixed (e.g., with left factoring)

Shift/Reduce (LR) Parsing

● Based on a table of states and actions
– Explicitly stack-based

– Shift tokens onto a stack

– Pattern-match top of stack to a RHS and reduce to
corresponding LHS (pop RHS and push LHS)

● Advantages
– Much more general than LL parsers

● Disadvantages
– Very difficult to construct by hand

● Usually constructed using automated tools

Compilation

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code Tokens Syntax tree

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing Parsing Code Generation
& Optimization

Compilation

char data[20];

int main() {
 float x
 = 42.0;
 return 7;
}

Source code Tokens Syntax tree

7f 45 4c 46 01
01 01 00 00 00
00 00 00 00 00
...

Machine code

Lexing Parsing

Lots of magic hidden here!
(take a compilers course)

Code Generation
& Optimization

Compiler Tools

● Creating a parser can be somewhat automated by
lexer/parser generators

– Classic: lex and yacc

– Modern: flex and bison (C) or ANTLR (Java, Python, etc.)

● Input: language description in regular expressions and
BNF

● Output: hard-coded lexing and parsing routines

– Can be re-generated if the grammar needs to be changed

– Still have to manually write the translation or execution code

Activity

● Construct state machines for the following regular expressions:

● Write recursive-descent parsing routines

for the following grammar:

(a|b|c)(ab|bc)x*yz* 1(1|0)*

 A → V = E ;
 E → T + E
 | T
 T → V * T
 | V
 V → a | b | c

You may assume the following methods
are implemented:

bool consume(char c)

Consumes a character of input and verifies that it
matches the given character (returns "false" if it does not).

char peek()

Returns a copy of the next character of input to be
consumed, but does not consume it.

1(10)*

(dd*.d*)|(d*.dd*) ← ε-transitions may make this one slightly easier

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

