

CS 430
Spring 2015

Mike Lam, Professor

Syntax

Overview

● General topics

– Syntax (what a program looks like)

– Semantics (what a program means)

– Implementation (how a program executes)

Syntax

● Textbook: "the form of [a language's] expressions, statements,
and program units."

● In other words:
– What programs written in that language look like

– The appearance of the code

● Semantics deal with the meaning of a program
● Syntax and semantics are (ideally) closely related

– Today we will be studying syntax

● Goals of syntax analysis:
– Checking for program validity or correctness

– Facilitate translation (compiler) or execution (interpreter) of a program

Languages

Chomsky Hierarchy of Languages

Regular

Context-free

Context-sensitive

Recursively enumerable

Most useful
for PL

● Alphabet:

– Σ = { set of all characters }

● Language:

– L = { set of sequences of characters from Σ }

– How to describe L succinctly? Need a meta-language.

Lexical Analysis

● Lexemes or tokens: the smallest building blocks of a
language's syntax

● Lexing or scanning: the process of separating a
character stream into tokens

total = sum(vals) / n

total identifier
= equals_op
sum identifier
(left_paren
vals identifier
) right_paren
/ divide_op
n identifier

char *str = "hi";

char keyword
* star_op
str identifier
= equals_op
"hi" str_literal
; semicolon

Lexical Analysis

● Regular expressions

– Describe regular languages
● Can be thought of as generalized search patterns

– Character sets: [a-z] or [0-9]

– Concatenation: ab

– Alternation: a|b

– Grouping: (a|b)c

– Quantification: a*b (or a+b or a?b)
● * = zero or more
● + = one or more
● ? = zero or one

Activity

● What languages are described by the following regular
expressions:

● Write a regular expression that describes decimal numbers

– Examples: “2.”, “21.3”, “.345”

– Assume “d” represents a digit ([0-9])

ab* a(a|b)*ba*|b

Syntax Analysis

● Tokens have no structure

– No inherent relationship between each other

– Need a way to describe hierarchy in a way that is closer to
the semantics of the language

total = sum(vals) / n

total identifier
= equals_op
sum identifier
(left_paren
vals identifier
) right_paren
/ divide_op
n identifier

=

total /

n

vals

sum()

Syntax Analysis

● Context-free language

– Description of a language's syntax

– Encodes hierarchy and structure of language tokens
● Usually represented using a tree

– Described by context-free grammars
● Usually written in Backus-Naur Form

– Recognized by pushdown automata
● Brief overview in next lecture

– Provide ways to control ambiguity, associativity, and
precedence in a language

Backus-Naur Form

● Non-terminals vs. terminals

– Terminals are essentially tokens

– One special non-terminal: the start symbol

● Production rules

– Left hand side: single non-terminal

– Right hand side: sequence of terminals and/or non-terminals

– LHS is replaced by the RHS during generation/derivation

– Colloquially: "is composed of"

● Sentence: a sequence of terminals

– A sentence is valid in a language if it can be derived using the grammar

<assign> ::= <var> = <expr>
<var> ::= a | b | c
<expr> ::= <expr> + <expr>
 | <var>

A → V = E
V → a | b | c
E → E + E
 | V

Derivation

● Derivation: a series of grammar-permitted
transformations leading to a sentence
– Each transformation applies exactly one rule

– Each intermediate string of symbols is a sentential form

– Leftmost vs. rightmost derivations
● Which non-terminal do you expand first?

– Parse tree represents a derivation in tree form (the sentence
is the sequence of all leaf nodes)

● Built from the top down during derivation
● Final parse tree is called complete parse tree
● Represents a program, executed from the bottom up

Example

● Show the leftmost derivation and parse tree of the
sentence "a = b + c" using this grammar:

A → V = E
V → a | b | c
E → E + E
 | V

Example

● Show the leftmost derivation and parse tree of the
sentence "a = b + c" using this grammar:

A

V E

EE

A → V = E
V → a | b | c
E → E + E
 | V

A
V = E
a = E
a = E + E
a = V + E
a = b + E
a = b + c

a

V V

+

=

b c

Ambiguous Grammars

● An ambiguous grammar allows multiple derivations
(and therefore parse trees) for the same sentence

– The semantics may be similar or identical, but there is a
difference syntactically

– It is important to be precise!

● Can usually be eliminated by rewriting the grammar

– Usually by making one or more rules more restrictive

Operator Associativity

● The previous ambiguity resulted from an unclear associativity

● Does x+y+z = (x+y)+z or x+(y+z)?

– Former is left-associative

– Latter is right-associative

● Closely related to recursion

– Left-hand recursion → left associativity

– Right-hand recursion → right associativity

● Sometimes enforced explicitly in a grammar

– Sometimes noted with annotations

Operator Precedence

● Precedence determines the relative priority of
operators in a single production

● Does x+y*z = (x+y)*z or x+(y*z)?

– Former: "+" has higher precedence

– Latter: "*" has higher precedence

● Sometimes enforced explicitly in a grammar

– Sometimes noted with annotations

Extended BNF

● New constructs

– Optional: []

– Closure: {}

– Multiple-choice: |

● All of these can be expressed using regular BNF

– (exercise left to the reader)

● So these are really just conveniences

Summary

● Regular languages

– Described by regular expressions

– Often used for text processing

– Core part of languages like Awk, and Perl

● Context-free languages

– Described by context-free grammars (using BNF)

– Often used to describe a programming language's syntax

● Lots of very nice language theory

– We won't dig too deeply in this course

– Take a compilers or language course if you're interested
● (or come talk to me)

Activity

1. Draw leftmost and rightmost parse trees for the statement “x = a + b * c;”
using the following grammar:

 A → V = E ;

 E → E + E

 | E * E

 | V

 V → a | b | c ... y | z

2. Modify the grammar to make expressions explicitly left-associative.

3. Modify the grammar again to give precedence to operator * over +.

4. Write a leftmost derivation and a parse tree for the expression “x = a + b * c;”
 using the new grammar.

5. Modify the grammar to allow chained assignments. Is this left- or right-associative?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

