

CS 430
Spring 2015

Mike Lam, Professor

Programming
Languages

Today

● Course overview (what?)

● Course policies (how?)

● Course rationale (why?)

Opening Challenge

● Define "programming language"

Overview

● Programming language (PL)

– Tool for formal expression of problems and solutions

– Audience: humans and machines

● General topics

– Syntax (what a program looks like)

– Semantics (what a program means)

– Implementation (how a program executes)

Why are PLs needed?

● Humans are excellent at approximate and contextual pattern
recognition

– This enables us to use imprecise language, which is often easier
and quicker

– Ex: "Meet you at El Charro at 7?"

– vs. "I request your presence at 1580 S. Main St., Harrisonburg, VA,
at 19:00 GMT-5 on 2015-01-13"

● Machines are less forgiving
– They are (currently) slower and less accurate at language

recognition and interpretation

– Thus, programming in a natural language is (currently) a Bad IdeaTM

Every language is “special”

● Surprising result: they're (mostly) all identical from a theoretical
point of view
– A language is "Turing-complete" if it can compute anything computable

by a Turing machine

– Most modern languages are Turing-complete

● Also, (mostly) all are designed for the von Neumann architecture
– Data and program in the same memory

– Fetch-decode-execute cycle

Why are there so many?

● Evolution over time

– Just like human languages

● Additionally: deliberate design efforts

– To address shortcomings of existing languages

Which language is best?

● And why?

Which language is best?

● It depends!

Goals

● Compare programming languages with regard to
syntax and semantics

● Discuss language implementation issues and the
tradeoffs involved

● Gain experience in learning new languages and
writing code in different language paradigms

– E.g., scripting, functional, and logic-based

Syllabus

● It's online:
– http://w3.cs.jmu.edu/lam2mo/cs430/syllabus.html

● Read it!

– Especially the parts marked in red

● The textbook is required

– “Concepts of Programming Languages” by Sebesta

– Older editions should be fine
● I do recommend the latest version
● Watch for discrepancies re: recent languages and trends

– No need to bring it to class

http://w3.cs.jmu.edu/lam2mo/cs430/syllabus.html

Course Website

● This is the main course website:

– http://w3.cs.jmu.edu/lam2mo/cs430/

● Lots of useful stuff:

– Syllabus

– Calendar

– Assignments

– Resources

● Check it regularly!

http://w3.cs.jmu.edu/lam2mo/cs430/

Online Systems

● Canvas

– Evaluations and grades

● Piazza (accessed via Canvas)

– Q&A and discussions

● Make sure you can access all of these!

Course Policies

● Regular attendance is highly recommended

– Watch the website for in-class quizzes and exams

– Labs will be conducted in ISAT 248

– If the class periods are not worth attending, tell me so that I
can make them better!

● Slides will be posted on the website

– Don't waste time writing down stuff from the slides

● Please silence your cell phones during class

Course Policies

● Submit programming projects as specified in the
project description

– No thumb drives, CDs, or emails (unless requested)

● Project grading will be based on automated test
results

● Late submissions up to 72 hours will receive a 10%
penalty per 24 hr period

Course Policies

● The JMU Honor Code applies on ALL assignments

– I will use software to detect plagiarism

– Violations may be sent to the honor council

● Unless stated otherwise on an individual assignment, all
submitted code must be YOUR work entirely

– You may work in groups to discuss assignments (in fact, I
encourage this), but do NOT share code!

– I encourage self-control: refrain from looking at others' code,
no matter how casual

– "Whiteboard rule of thumb": if you can write it on a whiteboard
in under two minutes, you can probably share it with others

Class Format

● Preparation

– Reading (textbook, links, etc.)

– Watching (Grove's videos)

– All units listed on website (“assignments” page)

● Reinforcement

– Overview lectures

– In-class activities

● Assessment

– In-class quizzes

– Online quizzes

– Labs and programming assignments

Course Grades

Assignments 70%

Midterm Exam 15%

Final Exam 15%

Class Format

● This class is a hybrid of theory and practice
– Both are important

– Quizzes and exams will focus on theory
● Depth (quizzes) vs. breadth (exams)

– Labs and PAs will focus on practice

● Work load should be fairly even
– Roughly 1-2 graded assignments per week

– Exams are relatively low-stakes (only 15% each)

– Check the calendar and assignment pages regularly
● No make-up assignments

– Do not rely on Canvas to remind you!

Course Policies

● Exams will be held in HHS 2208

● I do not curve during the semester

– Individual assignments (usually exams) may be curved at the end
of the semester

● If you ask for a re-grade, I may re-grade the entire
assignment

– This applies to homework and projects, too

● If you have to miss a due date or exam because of an
excused absence, let me know ASAP

– I do NOT guarantee make-up opportunities, but early notification
certainly makes me more amenable to doing so

Contacting Me

● Questions? Try Piazza!

● Email: lam2mo
– I will attempt to respond as quickly as possible, but do not

expect a response in under 24 hours

● Office: ISAT 227

– Office hours TBD
● Please fill out the course survey!

– Appointments preferred outside office hours

Questions?

Let's talk about PL

● Why might we want to study languages?

Why PL?

● Increased capacity to express ideas

– E.g., use of associative maps in languages that don't
explicitly provide them

● Improved background for choosing appropriate
languages

– We tend to choose things that are familiar, so it is
advantageous to be familiar with many languages

● Increased ability to learn new languages

– Practice helps, as does learning PL fundamentals

– Also improves mastery of already-known languages

Why PL?

● Better understanding of the significance of implementation
– Move beyond superficial differences between language syntax

(whitespace, brackets, etc.)

– Helps with program debugging

● Overall advancement of computing

– Broader knowledge enables informed trends

– CS does not benefit from "language ghetto" or flamewar
mentalities

– What if ALGOL 60 had become more popular than Fortran in
the 1960s?

Why PL? (the real reasons)

● It looks good on your resume

● It makes you a more valuable employee
● You get to brag about all the theory and languages

you know

– We're using two "hip"/"cult" languages this semester

● It's fun!

– (I think so, anyway...)

We already know a lot!

● Java
● C/C++
● Python
● Go
● Assembly/machine code
● Javascript
● R
● C#
● Bash
● Visual Basic
● HTML/CSS (?)

How to evaluate languages?

Evaluating Languages

● Readability

– How easy is it to understand already-written code?

● Writability

– How easy is it to write clear, efficient code?

● Reliability

– How easy is it to write programs that adhere to
specifications?

Evaluating Languages

● Simplicity
● Orthogonality
● Data types
● Syntax design
● Support for abstraction
● Expressivity
● Type checking
● Exception handling
● Restricted aliasing
● Standardization

Evaluating Languages

● Simplicity (few basic constructs, minimal overloading)
● Orthogonality (independence of features, feature symmetry)
● Data types (expressive without being redundant)
● Syntax design (consistency, sensible keywords)
● Support for abstraction (subprograms, data structures)
● Expressivity (conveniency, "elegance")
● Type checking (strict is safer, but cost vs. benefit is debatable)
● Exception handling (early detection, clean handling)
● Restricted aliasing (make it apparent)
● Standardization (respected organization, appropriate time)

Evaluating Languages

● Various costs
– Programmer training

– Code writing and debugging

– Compile time

– Execution time

– Runtime system

– Maintenance

– Porting

● Tradeoffs exist between these costs
– Language designs represent points on these spectrums

Language Categories

● Traditional bins:

– Procedural/imperative (assembly, Fortran, COBOL, ALGOL, C)

– Functional (Lisp, Scheme, Haskell)

– Logic- or rule-based (Prolog)

– Object-oriented (Smalltalk, C++, Java)

● Other bins:

– Visual (Visual Basic, Adobe Flash)

– Scripting (Perl, Javascript, Python, Ruby)

– Markup or metadata (HTML, LaTeX)

– Educational (Scratch)

– Special-purpose or domain-specific (DSL)

Compilation vs. Interpretation

Compilation

Source code

Executable

Results

Execution

Interpretation

Source code

Results

Compilation

Source code

Intermediate
code

Results

Interpretation

Compiled Interpreted Hybrid

Context: Programming Domains

● Scientific
– Primary concern: efficiency (speed)

● Business
– Primary concern: data processing and formatting

● Artificial intelligence
– Primary concern: symbolic computation

● Systems
– Primary concern: efficiency, low-level access, and portability

– Value of language safety is hotly debated

● Web
– Primary concern: presentation and ease of development

Context: PL Design Influences

● Hardware/architecture design shifts

– Historic prevalence of imperative/procedural languages that
closely match the hardware

– Cheaper hardware → higher-level languages

● Software development methodology shifts

– Better software engineering practices and a call for safer
languages

– Agile programming and rapid prototyping languages

● Social, cultural, and political shifts

– Millennial and post-millennial generation culture ("hip" web
languages and software systems)

Relative Popularity

Historical Popularity

Primary Course Languages

● Ruby
– Latest version: 2.2.0

– ISAT 248 lab version: 2.0.0

● Haskell (GHC)
– Latest version: 2014.2.0.0

– ISAT 248 lab version: (same)

● Prolog (GNU)
– Latest version: 1.4.4

– ISAT 248 lab version: (same)

● All of these can be installed on your local machine
– I recommend that you do so!

– GNU/Linux and Mac OS X are fine

– Windows can be difficult (I recommend Cygwin or a virtual machine)

Homework

● Complete course survey by Thursday (on Canvas)
● Read Chapters 1 & 2

– Optionally, watch videos on PL history

● On Thursday

– Lecture/discussion on Unit 2 (PL history)

– Quiz on Unit 1 (Introduction)

Good luck!

● Have a great semester!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

