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Today

● Course overview (what?)

● Course policies (how?)

● Course rationale (why?)



  

Opening Challenge

● Define "programming language"



  

Overview

● Programming language (PL)

– Tool for formal expression of problems and solutions

– Audience: humans and machines

● General topics

– Syntax  (what a program looks like)

– Semantics  (what a program means)

– Implementation  (how a program executes)



  

Why are PLs needed?

● Humans are excellent at approximate and contextual pattern
recognition

– This enables us to use imprecise language, which is often easier
and quicker

– Ex: "Meet you at El Charro at 7?"

– vs. "I request your presence at 1580 S. Main St., Harrisonburg, VA,
at 19:00 GMT-5 on 2015-01-13"

● Machines are less forgiving
– They are (currently) slower and less accurate at language

recognition and interpretation

– Thus, programming in a natural language is (currently) a Bad IdeaTM



  

Every language is “special”

● Surprising result: they're (mostly) all identical from a theoretical
point of view
– A language is "Turing-complete" if it can compute anything computable

by a Turing machine

– Most modern languages are Turing-complete

● Also, (mostly) all are designed for the von Neumann architecture
– Data and program in the same memory

– Fetch-decode-execute cycle



  

Why are there so many?

● Evolution over time

– Just like human languages

● Additionally: deliberate design efforts

– To address shortcomings of existing languages



  

Which language is best?

● And why?



  

Which language is best?

● It depends!



  

Goals

● Compare programming languages with regard to
syntax and semantics

● Discuss language implementation issues and the
tradeoffs involved

● Gain experience in learning new languages and
writing code in different language paradigms

– E.g., scripting, functional, and logic-based



  

Syllabus

● It's online:
– http://w3.cs.jmu.edu/lam2mo/cs430/syllabus.html

● Read it!

– Especially the parts marked in red

● The textbook is required

– “Concepts of Programming Languages” by Sebesta

– Older editions should be fine
● I do recommend the latest version
● Watch for discrepancies re: recent languages and trends

– No need to bring it to class

http://w3.cs.jmu.edu/lam2mo/cs430/syllabus.html


  

Course Website

● This is the main course website:

– http://w3.cs.jmu.edu/lam2mo/cs430/

● Lots of useful stuff:

– Syllabus

– Calendar

– Assignments

– Resources

● Check it regularly!

http://w3.cs.jmu.edu/lam2mo/cs430/


  

Online Systems

● Canvas

– Evaluations and grades

● Piazza (accessed via Canvas)

– Q&A and discussions

● Make sure you can access all of these!



  

Course Policies

● Regular attendance is highly recommended

– Watch the website for in-class quizzes and exams

– Labs will be conducted in ISAT 248

– If the class periods are not worth attending, tell me so that I
can make them better!

● Slides will be posted on the website

– Don't waste time writing down stuff from the slides

● Please silence your cell phones during class



  

Course Policies

● Submit programming projects as specified in the
project description

– No thumb drives, CDs, or emails (unless requested)

● Project grading will be based on automated test
results

● Late submissions up to 72 hours will receive a 10%
penalty per 24 hr period



  

Course Policies

● The JMU Honor Code applies on ALL assignments

– I will use software to detect plagiarism

– Violations may be sent to the honor council

● Unless stated otherwise on an individual assignment, all
submitted code must be YOUR work entirely

– You may work in groups to discuss assignments (in fact, I
encourage this), but do NOT share code!

– I encourage self-control: refrain from looking at others' code,
no matter how casual

– "Whiteboard rule of thumb": if you can write it on a whiteboard
in under two minutes, you can probably share it with others



  

Class Format

● Preparation

– Reading (textbook, links, etc.)

– Watching (Grove's videos)

– All units listed on website (“assignments” page)

● Reinforcement

– Overview lectures

– In-class activities

● Assessment

– In-class quizzes

– Online quizzes

– Labs and programming assignments



  

Course Grades

Assignments 70%

Midterm Exam 15%

Final Exam 15%



  

Class Format

● This class is a hybrid of theory and practice
– Both are important

– Quizzes and exams will focus on theory
● Depth (quizzes) vs. breadth (exams)

– Labs and PAs will focus on practice

● Work load should be fairly even
– Roughly 1-2 graded assignments per week

– Exams are relatively low-stakes (only 15% each)

– Check the calendar and assignment pages regularly
● No make-up assignments

– Do not rely on Canvas to remind you!



  

Course Policies

● Exams will be held in HHS 2208

● I do not curve during the semester

– Individual assignments (usually exams) may be curved at the end
of the semester

● If you ask for a re-grade, I may re-grade the entire
assignment

– This applies to homework and projects, too

● If you have to miss a due date or exam because of an
excused absence, let me know ASAP

– I do NOT guarantee make-up opportunities, but early notification
certainly makes me more amenable to doing so



  

Contacting Me

● Questions? Try Piazza!

● Email: lam2mo
– I will attempt to respond as quickly as possible, but do not

expect a response in under 24 hours

● Office:  ISAT 227

– Office hours TBD
● Please fill out the course survey!

– Appointments preferred outside office hours



  

Questions?



  

Let's talk about PL

● Why might we want to study languages?



  

Why PL?

● Increased capacity to express ideas

– E.g., use of associative maps in languages that don't
explicitly provide them

● Improved background for choosing appropriate
languages

– We tend to choose things that are familiar, so it is
advantageous to be familiar with many languages

● Increased ability to learn new languages

– Practice helps, as does learning PL fundamentals

– Also improves mastery of already-known languages



  

Why PL?

● Better understanding of the significance of implementation
– Move beyond superficial differences between language syntax

(whitespace, brackets, etc.)

– Helps with program debugging

● Overall advancement of computing

– Broader knowledge enables informed trends

– CS does not benefit from "language ghetto" or flamewar
mentalities

– What if ALGOL 60 had become more popular than Fortran in
the 1960s?



  

Why PL?  (the real reasons)

● It looks good on your resume

● It makes you a more valuable employee
● You get to brag about all the theory and languages

you know

– We're using two "hip"/"cult" languages this semester

● It's fun!

– (I think so, anyway...)



  

We already know a lot!

● Java
● C/C++
● Python
● Go
● Assembly/machine code
● Javascript
● R
● C#
● Bash
● Visual Basic
● HTML/CSS (?)



  

How to evaluate languages?



  

Evaluating Languages

● Readability

– How easy is it to understand already-written code?

● Writability

– How easy is it to write clear, efficient code?

● Reliability

– How easy is it to write programs that adhere to
specifications?



  

Evaluating Languages

● Simplicity
● Orthogonality
● Data types
● Syntax design
● Support for abstraction
● Expressivity
● Type checking
● Exception handling
● Restricted aliasing
● Standardization



  

Evaluating Languages

● Simplicity (few basic constructs, minimal overloading)
● Orthogonality (independence of features, feature symmetry)
● Data types (expressive without being redundant)
● Syntax design (consistency, sensible keywords)
● Support for abstraction (subprograms, data structures)
● Expressivity (conveniency, "elegance")
● Type checking (strict is safer, but cost vs. benefit is debatable)
● Exception handling (early detection, clean handling)
● Restricted aliasing (make it apparent)
● Standardization (respected organization, appropriate time)



  

Evaluating Languages

● Various costs
– Programmer training

– Code writing and debugging

– Compile time

– Execution time

– Runtime system

– Maintenance

– Porting

● Tradeoffs exist between these costs
– Language designs represent points on these spectrums



  

Language Categories

● Traditional bins:

– Procedural/imperative (assembly, Fortran, COBOL, ALGOL, C)

– Functional (Lisp, Scheme, Haskell)

– Logic- or rule-based (Prolog)

– Object-oriented (Smalltalk, C++, Java)

● Other bins:

– Visual (Visual Basic, Adobe Flash)

– Scripting (Perl, Javascript, Python, Ruby)

– Markup or metadata (HTML, LaTeX)

– Educational (Scratch)

– Special-purpose or domain-specific (DSL)



  

Compilation vs. Interpretation

Compilation

Source code

Executable

Results

Execution

Interpretation

Source code

Results

Compilation

Source code

Intermediate
code

Results

Interpretation

Compiled Interpreted Hybrid



  

Context: Programming Domains

● Scientific
– Primary concern: efficiency (speed)

● Business
– Primary concern: data processing and formatting

● Artificial intelligence
– Primary concern: symbolic computation

● Systems
– Primary concern: efficiency, low-level access, and portability

– Value of language safety is hotly debated

● Web
– Primary concern: presentation and ease of development



  

Context: PL Design Influences

● Hardware/architecture design shifts

– Historic prevalence of imperative/procedural languages that
closely match the hardware

– Cheaper hardware → higher-level languages

● Software development methodology shifts

– Better software engineering practices and a call for safer
languages

– Agile programming and rapid prototyping languages

● Social, cultural, and political shifts

– Millennial and post-millennial generation culture ("hip" web
languages and software systems)



  

Relative Popularity



  

Historical Popularity



  

Primary Course Languages

● Ruby
– Latest version: 2.2.0

– ISAT 248 lab version: 2.0.0

● Haskell (GHC)
– Latest version: 2014.2.0.0

– ISAT 248 lab version: (same)

● Prolog (GNU)
– Latest version: 1.4.4

– ISAT 248 lab version: (same)

● All of these can be installed on your local machine
– I recommend that you do so!

– GNU/Linux and Mac OS X are fine

– Windows can be difficult (I recommend Cygwin or a virtual machine)



  

Homework

● Complete course survey by Thursday (on Canvas)
● Read Chapters 1 & 2

– Optionally, watch videos on PL history

● On Thursday

– Lecture/discussion on Unit 2 (PL history)

– Quiz on Unit 1 (Introduction)



  

Good luck!

● Have a great semester!
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