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Exceptional control flow

● Most control flow is sequential
– Minor exceptions: jumps and procedure calls

● Caused by changes in internal program state (and thus 
predictable)

– However, we have also seen violations of this rule
● Control flow changes in response to external factors
● (e.g., exceptions in Java or segfaults in C)



  

Exceptional control flow

● Exceptions violate sequential control flow
– Unconditional transfer to another location in code

● Partially implemented in hardware, partially in software

– Often the result of an error condition
● But not necessarily – we can also use exceptions for time-sharing!

– Categorized as asynchronous vs. synchronous
● Whether it happens as a result of an external source or not

– Categorized by recovery possibility
● Always returns, sometimes returns, or never returns

– If recovery is possible, further categorized by recovery location
● Same instruction vs. next instruction



  

Interrupts

● Interrupt: communication mechanism
– Asynchronous, always returns to next instruction
– “Interrupts” execution as the result of an outside event

● Example: an I/O operation has finished
● Example: a process has finished its time slice



  

Traps

● Trap: intentional control transfer to kernel
– Synchronous, (almost) always returns to next instruction
– Like a function call, except the target runs in kernel mode
– Also referred to as system calls
– x86-64 instruction “syscall” w/ ID in %rax

– Parameters are passed in %rdi-%r9; return value stored in %rax

– Well-known standards (e.g., POSIX)



  

Faults

● Fault: error that is potentially correctable
– Synchronous, sometimes returns to same instruction
– Page fault (#14): virtual memory cache miss

● Recoverable – read the required page from slower memory

– Segmentation fault (#13): invalid memory access
● Not recoverable – undefined behavior

– Divide-by-zero error (#0)
● Not recoverable – undefined result



  

Aborts

● Abort: unrecoverable error
– Synchronous, never returns
– Machine check (#18): fatal hardware error



  

System calls

● In P4: iotrap instruction is a system call
– Performs I/O operations using stdin and stdout

– Input: single character or decimal integer
● Destination memory address in %rdi

– Output: single character, decimal integer, or string
● Source memory address in %rsi

In P4, you’ll simulate these system calls using 
standard C functions like printf and scanf



  

System calls

● Some of the functions we've been using in C are actually 
wrappers for a system call (or multiple system calls)
– fopen, fread, malloc

● System calls: open (id=2), read (id=0), mmap (id=9)

– System call interfaces are defined by standards
● SysV vs. POSIX (IEEE standard: http://pubs.opengroup.org/onlinepubs/9699919799/)

– In general, system call wrappers are called system-level functions
– It is important to check for errors after calling these functions

● Textbook uses wrapper functions (e.g., "Open") for this

int fd = open("file.txt", O_RDONLY);
if (fd < 0) {
    fprintf(stderr, "Error opening file: %s\n", strerror(errno));
    exit(EXIT_FAILURE);
}



  

Textbook notes

● Error handling is important!
– Textbook provides error-handling wrappers; this is good practice
– However, we’ll omit error handling to simplify examples

● envp parameter to main() is not standard
– getenv() is the only environmental mechanism defined by the 

POSIX C99 standard



  

Processes

● Exceptions enable processes
– Process: a running program

● One program, (possibly) many processes

– Abstraction provided by OS kernel
● One kernel, many user processes

– Shared portion of virtual address space
● Kernel memory (above stack)
● This region is not visible to user programs

– Toggle control (kernel and processes)
● Interrupts – cycle through processes ("round robin")
● Traps – function call from processes into kernel ("syscalls")
● Faults – software error (recover or abort)
● Aborts – stop process without taking down the machine



  

Implementing processes

● Processes are implemented by the OS kernel
– Kernel maintains data structure w/ process 

information
● Including an ID for each process (pid)

– Multitasking via exceptional control flow
● Periodic interrupt to switch processes
● Called round-robin switching

– Context switch: swapping current process
● Save context of old process
● Restore context of new process
● Pass control to the restored process



  

Exception implementation

● Kernel exception table
– Every exception is assigned a unique ID
– Table translates exception ID to handler address



  

Processes

● Process: instance of an executing program
– Independent single logical flow and private virtual address space

● Logical flow: sequence of executed instructions
● Concurrency: overlapping logical flows
● Multitasking: processes take turns
● Parallelism: concurrent flows on separate CPUs/cores
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Process creation

● The fork() syscall creates a new process
– Initializes new entry in the kernel data structures
– To user code, the function call returns twice

● Once for original process (parent) and once for new process (child)
● Returns 0 in child process
● Returns child pid in parent process
● Both processes will continue executing concurrently

– Parent and child have separate address spaces
● Child's space is a duplicate of parent's at the time of the fork
● They will diverge after the fork!

– Child inherits parent's environment and open files



  

Process creation example

● Fork returns twice!

int main ()
{
    printf("Before fork\n");

    pid_t pid = fork();

    printf("After fork: pid=%d\n", pid);

    return 0;
}

fork()



  

Process creation example

● What does this code do?

int main ()
{
    printf("Before fork\n");

    pid_t pid1 = fork();

    printf("After fork: pid1=%d\n", pid1);

    pid_t pid2 = fork();

    printf("After second fork: pid1=%d pid2=%d\n", pid1, pid2);

    return 0;
}



  

Process creation example

● Fork returns twice!  (every time)
– Beware of non-determinism and I/O interleaving

int main ()
{
    printf("Before fork\n");

    pid_t pid1 = fork();

    printf("After fork: pid1=%d\n", pid1);

    pid_t pid2 = fork();

    printf("After second fork: pid1=%d pid2=%d\n", pid1, pid2);

    return 0;
}

Exercise: Modify this program to fork a total of three processes

fork()

fork()fork()



  

Parent/child process example

● Parents can wait for children to finish

int main ()
{
    printf("Before fork\n");

    pid_t pid = fork();

    if (pid != 0) {     // parent
        wait(NULL);
        printf("Child has terminated.\n");

    } else {            // child
        printf("Child is running.\n");
    }

    printf("After fork: pid=%d\n", pid);

    return 0;
}

fork()

wait()



  

Process control syscalls

● #include <stdlib.h>

– getenv: get environment variable value
– setenv: change environment variable value

● #include <sys/types.h>

– pid_t: new type for PID value
● #include <unistd.h>

– fork: create a new process
– getpid: return current process id (pid)
– getppid: return parent’s process id (pid)
– exit: terminate current process
– execve: load and run another program in the current process
– sleep: suspend process for specified time period

● #include <sys/wait.h>

– waitpid: wait for a particular child process to terminate (requires child’s PID)
– wait: wait for any child process to terminate



  

Processes and shells

● A shell is an interactive application-level program that 
launches other programs (called jobs or process groups)
– All spawned as a result of the same command

● Foreground vs. background jobs
– A single foreground job (interactive I/O)
– Zero or more background jobs
– Use '&' to start something in the background

● Ex: "./my_prog &"

– Use CTRL-Z to send foreground job to background
– Use CTRL-C to interrupt the foreground job
– fg: promote background job to foreground



  

Fork/execve example

● Shells use fork() and execve() to run commands

int main ()
{
    printf("Before fork\n");
    pid_t pid = fork();

    if (pid != 0) {     // parent
        wait(NULL);
        printf("Child has terminated.\n");

    } else {            // child
        printf("Child is running.\n");
        char *cmd    = "/bin/uname";
        char *args[] = { "uname", "-a", NULL };
        char *env[]  = { NULL };
        execve(cmd, args, env);
        printf("This won't print unless an error occurs.\n");
    }

    printf("After fork: pid=%d\n", pid);
    return 0;
}

/bin/uname

fork()

execve()



  

Linux process tools

● ps – list processes
– "ps -fe" to see all processes on the system

– "ps -fu <username>" to see your processes

● top – list processes, ordered by current CPU
– Auto-updates

● /proc – virtual filesystem exposing kernel data structures
● pmap – display memory map of a process
● strace – prints a list of system calls from a process

– Compile with "-static" to get cleaner traces
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