

CS 261
Fall 2023

Mike Lam, Professor

Exceptional Control Flow

and Processes

Exceptional control flow

● Most control flow is sequential
– Minor exceptions: jumps and procedure calls

● Caused by changes in internal program state (and thus
predictable)

– However, we have also seen violations of this rule
● Control flow changes in response to external factors
● (e.g., exceptions in Java or segfaults in C)

Exceptional control flow

● Exceptions violate sequential control flow
– Unconditional transfer to another location in code

● Partially implemented in hardware, partially in software

– Often the result of an error condition
● But not necessarily – we can also use exceptions for time-sharing!

– Categorized as asynchronous vs. synchronous
● Whether it happens as a result of an external source or not

– Categorized by recovery possibility
● Always returns, sometimes returns, or never returns

– If recovery is possible, further categorized by recovery location
● Same instruction vs. next instruction

Interrupts

● Interrupt: communication mechanism
– Asynchronous, always returns to next instruction
– “Interrupts” execution as the result of an outside event

● Example: an I/O operation has finished
● Example: a process has finished its time slice

Traps

● Trap: intentional control transfer to kernel
– Synchronous, (almost) always returns to next instruction
– Like a function call, except the target runs in kernel mode
– Also referred to as system calls
– x86-64 instruction “syscall” w/ ID in %rax

– Parameters are passed in %rdi-%r9; return value stored in %rax

– Well-known standards (e.g., POSIX)

Faults

● Fault: error that is potentially correctable
– Synchronous, sometimes returns to same instruction
– Page fault (#14): virtual memory cache miss

● Recoverable – read the required page from slower memory

– Segmentation fault (#13): invalid memory access
● Not recoverable – undefined behavior

– Divide-by-zero error (#0)
● Not recoverable – undefined result

Aborts

● Abort: unrecoverable error
– Synchronous, never returns
– Machine check (#18): fatal hardware error

System calls

● In P4: iotrap instruction is a system call
– Performs I/O operations using stdin and stdout

– Input: single character or decimal integer
● Destination memory address in %rdi

– Output: single character, decimal integer, or string
● Source memory address in %rsi

In P4, you’ll simulate these system calls using
standard C functions like printf and scanf

System calls

● Some of the functions we've been using in C are actually
wrappers for a system call (or multiple system calls)
– fopen, fread, malloc

● System calls: open (id=2), read (id=0), mmap (id=9)

– System call interfaces are defined by standards
● SysV vs. POSIX (IEEE standard: http://pubs.opengroup.org/onlinepubs/9699919799/)

– In general, system call wrappers are called system-level functions
– It is important to check for errors after calling these functions

● Textbook uses wrapper functions (e.g., "Open") for this

int fd = open("file.txt", O_RDONLY);
if (fd < 0) {
 fprintf(stderr, "Error opening file: %s\n", strerror(errno));
 exit(EXIT_FAILURE);
}

Textbook notes

● Error handling is important!
– Textbook provides error-handling wrappers; this is good practice
– However, we’ll omit error handling to simplify examples

● envp parameter to main() is not standard
– getenv() is the only environmental mechanism defined by the

POSIX C99 standard

Processes

● Exceptions enable processes
– Process: a running program

● One program, (possibly) many processes

– Abstraction provided by OS kernel
● One kernel, many user processes

– Shared portion of virtual address space
● Kernel memory (above stack)
● This region is not visible to user programs

– Toggle control (kernel and processes)
● Interrupts – cycle through processes ("round robin")
● Traps – function call from processes into kernel ("syscalls")
● Faults – software error (recover or abort)
● Aborts – stop process without taking down the machine

Implementing processes

● Processes are implemented by the OS kernel
– Kernel maintains data structure w/ process

information
● Including an ID for each process (pid)

– Multitasking via exceptional control flow
● Periodic interrupt to switch processes
● Called round-robin switching

– Context switch: swapping current process
● Save context of old process
● Restore context of new process
● Pass control to the restored process

Exception implementation

● Kernel exception table
– Every exception is assigned a unique ID
– Table translates exception ID to handler address

Processes

● Process: instance of an executing program
– Independent single logical flow and private virtual address space

● Logical flow: sequence of executed instructions
● Concurrency: overlapping logical flows
● Multitasking: processes take turns
● Parallelism: concurrent flows on separate CPUs/cores

Time

Logical
flow

Concurrent
flows

Multitasking
concurrent

flows

Parallel
concurrent

flows

CPU Core1 Core2

Process creation

● The fork() syscall creates a new process
– Initializes new entry in the kernel data structures
– To user code, the function call returns twice

● Once for original process (parent) and once for new process (child)
● Returns 0 in child process
● Returns child pid in parent process
● Both processes will continue executing concurrently

– Parent and child have separate address spaces
● Child's space is a duplicate of parent's at the time of the fork
● They will diverge after the fork!

– Child inherits parent's environment and open files

Process creation example

● Fork returns twice!

int main ()
{
 printf("Before fork\n");

 pid_t pid = fork();

 printf("After fork: pid=%d\n", pid);

 return 0;
}

fork()

Process creation example

● What does this code do?

int main ()
{
 printf("Before fork\n");

 pid_t pid1 = fork();

 printf("After fork: pid1=%d\n", pid1);

 pid_t pid2 = fork();

 printf("After second fork: pid1=%d pid2=%d\n", pid1, pid2);

 return 0;
}

Process creation example

● Fork returns twice! (every time)
– Beware of non-determinism and I/O interleaving

int main ()
{
 printf("Before fork\n");

 pid_t pid1 = fork();

 printf("After fork: pid1=%d\n", pid1);

 pid_t pid2 = fork();

 printf("After second fork: pid1=%d pid2=%d\n", pid1, pid2);

 return 0;
}

Exercise: Modify this program to fork a total of three processes

fork()

fork()fork()

Parent/child process example

● Parents can wait for children to finish

int main ()
{
 printf("Before fork\n");

 pid_t pid = fork();

 if (pid != 0) { // parent
 wait(NULL);
 printf("Child has terminated.\n");

 } else { // child
 printf("Child is running.\n");
 }

 printf("After fork: pid=%d\n", pid);

 return 0;
}

fork()

wait()

Process control syscalls

● #include <stdlib.h>

– getenv: get environment variable value
– setenv: change environment variable value

● #include <sys/types.h>

– pid_t: new type for PID value
● #include <unistd.h>

– fork: create a new process
– getpid: return current process id (pid)
– getppid: return parent’s process id (pid)
– exit: terminate current process
– execve: load and run another program in the current process
– sleep: suspend process for specified time period

● #include <sys/wait.h>

– waitpid: wait for a particular child process to terminate (requires child’s PID)
– wait: wait for any child process to terminate

Processes and shells

● A shell is an interactive application-level program that
launches other programs (called jobs or process groups)
– All spawned as a result of the same command

● Foreground vs. background jobs
– A single foreground job (interactive I/O)
– Zero or more background jobs
– Use '&' to start something in the background

● Ex: "./my_prog &"

– Use CTRL-Z to send foreground job to background
– Use CTRL-C to interrupt the foreground job
– fg: promote background job to foreground

Fork/execve example

● Shells use fork() and execve() to run commands

int main ()
{
 printf("Before fork\n");
 pid_t pid = fork();

 if (pid != 0) { // parent
 wait(NULL);
 printf("Child has terminated.\n");

 } else { // child
 printf("Child is running.\n");
 char *cmd = "/bin/uname";
 char *args[] = { "uname", "-a", NULL };
 char *env[] = { NULL };
 execve(cmd, args, env);
 printf("This won't print unless an error occurs.\n");
 }

 printf("After fork: pid=%d\n", pid);
 return 0;
}

/bin/uname

fork()

execve()

Linux process tools

● ps – list processes
– "ps -fe" to see all processes on the system

– "ps -fu <username>" to see your processes

● top – list processes, ordered by current CPU
– Auto-updates

● /proc – virtual filesystem exposing kernel data structures
● pmap – display memory map of a process
● strace – prints a list of system calls from a process

– Compile with "-static" to get cleaner traces

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 25
	Slide 26

