CS 261
Fall 2022

Mike Lam, Professor

CPU Architecture



 CPU stages and design
* Pipelining



I CPU overview

A CPU consists of

— Combinational circuits for computation

- Sequential circuits for memory

- Wires/buses for connectivity and intermediate results
— A clocked register PC for synchronization



I Example

+— Cycle1 —¥¢e— Cycle2 —f¢— Cycle 3 —¢— Cycle 4 —
Clock _\__\__\_;_\_f_
X X
©) @ @ @
Cycle1: | 0x000: irmovg $0x100,%rbx # %$rbx <-- 0x100
Cycle2: | 0x00a: irmovg $0x200,%rdx # $rdx <-- 0x200
Cycle3: | 0x014: addg %rdx, rbx # %rbx <-- 0x300 CC <-- 000
Cycle 4: | 0x016: je dest # Not taken
Cycle5: | 0x01f: rmmovg $rbx, 0 (%rdx) # M[0x200] <-- 0x300
@ Beginning of cycle 3 @ End of cycle 3
4 e
Read Write Read Write
Combinational <j Combinational <]
Logic Data P Logic Data ™
f :> memory [N f :> memory | ]
CcC CcC
100 100
Read Write Read Write
Ports Ports f 00Q Ports Ports
<:| Register | , <:3 Register | , $rbx
file K file K <-=
é%rbx = 0x100 $%rbx = 0x100 0x300
k %rdx = 0x200 k / %rdx = 0x200
G G 0x016
PC PC
0x014 < 0x014 <




Clock
Cycle 1: | 0x000:
Cycle 2: | 0x00a:
Cycle 3: | 0x014:
Cycle 4:
Cycle 5: | ox01f:

+— Cycle1 —

L

— Cycle 2 —

I —

@

+— Cycle3 —¢— Cycle 4 —

L L

@ @ @

irmovg $0x100, $rbx

# %rbx <-- 0x100

irmovg $0x200,%rdx # %$rdx <-- 0x200

rmmovqg %rbx,0 (%$rdx) # M[0x200] <-- 0x300

addg %rdx, $rbx

# $rbx <-- 0x300 CC <-- 000

® Beginning of cycle 4

/

Combinational
Logic

47

CC
000

7

Read

-

5

Read
Ports

-

Data p*
memory ™\
Write
Ports
Register
fle K-

$rbx = 0x300

)i

%rdx = 0x200

PC
0x016 <

@ End of cycle 4

Register
file
$rbx = 0x300

%rdx = 0x200




newPC

I CPU design .

 SEQ: sequential Y86 CPU
- Runs one instruction at a time

Memory

- ysim: simulator

 Components:

— Clocked register (PC)

— Hardware units (blue boxes)
« Combinational/sequential circuits

* ALU, reqister file, memory ' (v )i Y st ) gt rc v
— Control logic (grey rectangles) %

Execute

« Combinational circuits Decode i

file
E

* Details in textbook Write back

- Wires (white circles) _— @W@ )
* Word (thick lines) imem_srror

Fetch Instruction PC
memaory increment

» Byte (thin lines) ;i :

* Bit (dotted lines) P




I System design

e CPU measurement

- Throughput: instructions executed per second

* GIPS: billions of (“giga-") instructions per second
1 GIPS - each instruction takes 1 nanosecond (a billionth of a second)

- Latency: time required per instruction (or sequence)

* Picosecond: 10'? seconds Nanosecond: 10° seconds
* 1,000 ps = 1 nanosecond

- Relationship: throughput = # instructions [ latency
* Example: 1/320ps * (1000ps/ns) = 0.003125 * 1000 = 3.1 GIPS



I System design

* Current CPU design is serial

— One Instruction executes at a time

- Only way to improve is to run faster!
- Limited by speed of light / electricity

* One approach: make it smaller
— Shorter circuit = faster circuit

- Limited by manufacturing technology

What else could we do? N




System design

* ldea: pipelined design
— Multiple instructions execute simultaneously (“instruction-level parallelism™)

— Similar to cafeteria line or car wash
— Split logic into stages and connect stages with clocked registers

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

300 ps 20 ps
Comb. Comb. Comb.
—_— Combinational —p Delay = 320 ps = logic [~ logic [ logic [ 7
logic Throughput = 3.12 GIPS A B c
(a) Hardware: Unpipelined Clock (a) Hardware: Three-stage pipeline Clock
i ‘ Il | A B C
= 12 A B C
- 13 A B C
Time R Time

(b) Pipeline diagram (b) Pipeline diagram



System design

 |dea: pipelined design
— Multiple instructions execute simultaneously (“instruction-level parallelism™)
— Similar to cafeteria line or car wash
- Split logic into stages and connect stages with clocked registers
- System design tradeoff: throughput vs. latency

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

300 ps 20 ps
Comb. Comb. Comb. Delay = 360 ps
Combinational Delay = 320 ps —>| |ogic [ logic logic [ -
— —> y p ogic ogic ogic -
logic Throughput = 3.12 GIPS A B C Throughput = 8.33 GIPS
(a) Hardware: Unpipelined Clock (a) Hardware: Three-stage pipeline Clock
ol ‘ Il | A B C
i I2 A B C
- I3 A B C
Time R Time

(b) Pipeline diagram (b) Pipeline diagram



B vs6 pipelining s

* It's complicated!

- Split up the stages
and add more
clocked registers for
Intermediate results




 Limitation: non-uniform partitioning
— Logic segments may have significantly different lengths

50ps 20 ps 150 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R Delav = 510
> 10GIC | ¢ e logic —> o[> logic [~Ple| o2y =219PS
A Throughput = 5.88 GIPS
g B g C g
L Hi H
Clock

(a) Hardware: Three-stage pipeline, nonuniform stage delays

I1
12
I3

Time

v

(b) Pipeline diagram



ll Pipelining

* Limitation: dependencies

- The effect of one instruction depends on the result of another
- Both data and control dependencies
- Sometimes referred to as hazards

Data dependency: Control dependency:
irmovq $8, Loop:

addq % subq %rdx, %rbx

jne loop

irmovq $10, %rdx



ll Pipelining

* Approaches to avoiding hazards

— Halt execution (or throw an exception)
- Stalling: “hold back™ an instruction temporarily

- Data forwarding: allow latter stages to feed into earlier stages,
bypassing memory or registers

 (for data dependencies)

- Branch prediction: guess address of next instruction
* (for control dependencies)

- For more info, read CS:APP section 4.5



I Conditional moves

* Similar to conditional jJumps, but they move data if
certain condition codes are set

- Benefit: no branch prediction penalty
* Improved performance in the presence of pipelining

if (a > b) c = d;

subq %rbox, %rax

(o) (o)
e s —
rrmovg %rdx, %rcx g werax, v
skip:
Data (CCs) and control No control dependency

dependencies (only data)



I Amdahl's Law

— . " TS should
T_=serial time S=speedup= == P
TP as p grows

T, = parallel time

p = # of parallel stages
r = % of logic not amenable to pipelining

(1-r)Tq Ts
T, = P +rlg S=speedup= (1T, -
+rTg
p

Amdahl's Law: S < % as p increases



Amdahl's Law

p = # of parallel stages

r = % of logic not
amenable to pipelining

Amdahl's Law:

1 :

S< - as p Increases
r=50% - speedup limited to 2x
r=25% - speedup limited to 4x
r=10% - speedup limited to 10x
r=5% - speedup limited to 20x

Speedup limited inversely
proportionally by serial %

Speedup

S = speedup =

20.00

18.00

16.00

14.00

12.00

o
s
=]
=

8.00

6.00

4.00

2.00

0.00

Ts
(1-r)Ts
D

Amdahl's Law

+r T

"]

|~

2

L7
/// Parallel portion
50%

}ff — %%
90%

/ — 95%

mmmmmmmmmmmmm
mmmmmmm

Number of stages

https://en.wikipedia.org/wiki/Amdahl's_law#/media/File:AmdahlsLaw.svg



I Summary

e We've now learned how a CPU Is constructed

- Transistors — logic gates - circuits - CPU

— Pipelining provides instruction-level parallelism
* Although there are some limitations

 This is not a CPU architecture class

- We won't be closely studying the specifics of SEQ

- If you're interested, the details are in section 4.3

- Same for PIPE (the pipelined version), in section 4.5
- If you're REALLY Iinterested, plan to take CS 456



I CS 456: Architecture

e Course objectives:

Summarize the construction of a pipelined processor from low-level building blocks

Describe and categorize hardware techniques for parallel implementation at the
instruction, data, and thread levels

Summarize storage and I/O interfacing techniques

Apply address decoding and memory hierarchy strategies

Evaluate the performance impact of various hardware designs, including caches
Describe how hardware implementations can improve overall system performance
Justify the use of hardware-based optimizations that fail occasionally

Compare and contrast the actual execution of code with software designs

Analyze how a person’s logical flow of thinking (sequential) differs from the processor
implementation

Demonstrate the ability to communicate hardware and software design trade-offs to both
professional colleagues and laypeople



I | essons learned

 Computers are not human; they’re complex machines

— Machines require extremely precise inputs
— Machine output can be difficult to interpret

* Abstraction helps to manage complexity
— Use simpler components to build more complex ones
* System design involves tradeoffs

- Simpler ISA vs. ease of coding
— Throughput vs. latency

* The details matter (A LOT!)

— There are many ways to fail
— Skill and dedication are required to succeed



I Next up

* Y86 architecture and semantics
 Memory architecture and caching
* Final module: operating systems



Lab Diagram

Sequential CPU:

Reminders: Throughput = Instrzlciion count
Clock ¥ u N atency
0.001 instructions/ps = 1 GIPS
Fch | Dec Exe Mem WB register

mrmovqg (%rdi), %rbx

Fch-Dec-Exe-Mem-WB

addq %rbx, %rax

Fch-Dec-Exe-Mem-WB

addqg %rcx, %rdi

Fch-Dec-Exe-Mem-WB

subq %rdx, %rsi

Fch-Dec-Exe-Mem-WB

jne loop

Fch-Dec-Exe-Mem-WB

addq %rcx, %rdi

subq %rdx, %rsi

jne loop

Time -

) ) Time —
Pipelined CPU:
Clo(.:i(lr ------------- -.I. _______________ Jr ------------- -.I. ............... Jr ------------- -.I. ............... Jr ------------- -.I. ............ Jr ------------- -.I. ............... JI
Fch »| Dec | »| Exe | —» Mem WB
RN RS R VOV R VU e FUVON A U VY A SRS B SN B S
mrmovqg (%rdi), %rbx Fch Dec
addq %rbx, %rax Fch

(UNFINISHED - #3 on lab)



	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

