ra

0000000100000f50 55 48 89 e5 48 83 ‘ec 10 48 8d 3d 3b 00 00 00 c7
0000000100000f6€ 45 fc 00 00 OO0 0O bO 00 €8 6d GO0 GO0 GO0 31 c9 89

C E; :2(5 1 0000000100000Ff7¢ 45 f8 89 c8 48 83 c4 10 5d c3

Mike Lam, Professor nain:
0000000100000F50 pushq %rbp
0000000100000f51 mov(q %rsp, %rbp
000OENO100LO6T54 subq $0x10, %rsp
000000016000058 leaq 0x3b(%rip), %rdi

Machine and Assembly Code
X86-64 Introduction

* Architecture/assembly intro
* Operands
e Basic opcodes

Memory bus- ”

Let's focus for now on the
single-CPU components

]

S

I von Neumann architecture

Register
ALU CPU File
PC
2. Decode
1. Fetch ? ¢ 3. Execute

Main Memory

(repeat)

I Machine code

e Machine code instruction

- Variable-length binary encoding of opcodes and operands
- Program (instructions) stored in memory along with data

— Specific to a particular CPU architecture (e.g., x86-64)

- Looks very different than the original C code!

int add (int numl1, int num2)

{
return numl + num2;

}

P0O00ONOONON400606 <add>:
400606: 55
400607 : 48 89 e5
40060a: 89 7d fc
40060d: 89 75 8
400610: 8b 55 fc
400613: 8b 45 8
400616: 01 do
400618: 5d

400619: c3

I Machine code

* Instructions are specified by an instruction set architecture (ISA)

- X86-64 (x64) Is the current dominant workstation/server architecture

* Enormous and complex; lots of legacy features and support for previous ISAs
* We’'ll learn a bit of it now, then later focus on a simplified form called Y86

- ARM is used in embedded and mobile markets
- POWER is used in the high-performance market (supercomputers!)
- RISC-V is used in CPU research (and is growing in the industrial market)

0000000000400606 <add>:
400606 55

400607 : 48 89 e5
40060a: 89 7d fc
40060d: 89 75 8
400610 8b 55 fc
400613: 8b 45 8
400616: 01 do
400618: 5d

400619: c3

I Assembly code

* Assembly code: human-readable form of machine code

- Each indented line of text represents a single machine code instruction

* Two main x86-64 formats: Intel and AT&T (we'll use the latter)
* Use "#" to denote comments (extends to end of line)

- Generated from C code by compiler (not a simple process!)
- Disassemblers like objdump can extract assembly from an executable

- Understanding assembly helps you to debug, optimize, and secure
your programs

0000000000400606 <add>:

400606: 55 push %rbp

400607 : 48 89 e5 mov %rsp, %rbp
40060a: 89 7d fc mov %edi, -0x4(%rbp)
40060d: 89 75 f8 mov %esi, -0x8(%rbp)
400610: 8b 55 fc mov -0x4(%rbp), %edx
400613: 8h 45 18 mov -0x8(%rbp), %eax
400616: 01 do add %edx, %eax
400618: 5d pop %rbp

400619 c3 retq

I Assembly code

* Assembly provides low-level access to machine

- Program counter (PC) tracks current instruction

* Like a bookmark; also referred to as the instruction pointer (IP)
— Arithmetic logic unit (ALU) executes opcode of instructions

* Today, we'll focus on some very basic opcodes
- Register file & main memory store operands
* Registers are faster but main memory is larger

0000000000400606 <add>:

400606:
400607 :
40060a:
40060d:
400610:
400613:
400616:
400618:
400619:

55
48
89
89
8b
8b
01
5d
c3

89
7d
/5
55
45
do

e5
fc
8
fc
8

opcode operands
- % N
push %rbp

mov %rsp, %rbp

mov %edi, -0x4(%rbp)
mov %esi, -0x8(%rbp)
mov -0x4(%rbp), %edx
mov -0x8(%rbp), %eax
add %edx, %eax

pop %rbp

retq

ALU

CPU Reg_ister
File

PC

Main Memory

I Operand types

 Immediate

— Operand value embedded in instruction itself
- Extends the size of the instruction by the width of the value
— Written in assembly using “$” prefix (e.g., $42 or $0x1234)

* Register

— Operand stored in register file

— Accessed by register number

- Written in assembly using name and “%” prefix (e.g., %eax or %rsp)
* Memory

— Operand stored in main memory
— Accessed by effective address calculated from instruction components
- Written in assembly using a variety of addressing modes

I Registers

* General-purpose

- %orax, %rbx, %rcx, and %rdx

%%rax (contents of %rax)
- %rsi and %rdi %rbx (contents of %rbx)
- Legacy name meanings (e.g., “%rax” as %rcx (contents of %rcx)
the accumulator) are less important for us %rdx ontonts of 9610
0
* But for now, note that %rax is also used to I —
store the return value of a function Yorsi (contents of %rsi)
%rdi (contents of %rd)
* Special
— %rip: instruction pointer
* This is the PC on x86-64 %rlp (contents of %rip)
- 0 . I
A)flags. status info %rﬂags (contents of %rflags)

* "Condition codes" in CS:APP
- %rbp: base pointer

— %rsp: stack pointer Register File

I Memory addressing modes

Absolute: addr R[reg] = value of reqister reg
- Effective address: addr

e Indirect: (regq) A
- Effective address: R[reg]
. > useful for
« Base + displacement: offset(req) pointers!
- Effective address: offset + R[req]
J
:)
- Indexed: offset(reg, ..., reg, ..)
- Effective address: offset + R[reg,__] + R[reg. .] useful for
arrays!
. Scaled indexed: offset(reg,._., reg. .., S) > o, e
- Effective address: offset + R[reg,__]+ R[reg. .]-s are optional here)

- Scale (s) mustbe 1, 2,4, or 8 y

I Exercise

* Given the following machine status, what is the value of the
following assembly operands? (assume 32-bit memory locations)

- $42

Registers
- $0x10 Name Value
- Arax %rax 0x100
- 0x104 % dXx Ox2
- (%rax)
- 4(%rax)
- 2(%rax, %rdx) Memory
_ (%rax, %rdx, 4) Address Value
' ' OX100 OXFF
Ox104 OXAB

0Ox108 Ox13

I Exercise

* Given the following machine status, what is the value of the
following assembly operands? (assume 32-bit memory locations)

- $42 42

Registers
- $0x10 16 Name Value
- %rax 0x100 %1 ax OX1006
- Ox104 OXAB % dXx OXx2
- (%rax) OXFF
- 4(%rax) OxAB
- 2(%rax, %rdx) OXAB Memory
wrax, wrde, 4) 013 Address Value
Ox100 OXFF
Ox104 OXAB

0Ox108 Ox13

I Question

* |In Xx86-64, assume the %rax register stores the
address of the data you want to access. Which
of the following operand specifiers could NOT
be used to access the data?

- A) %rax

- B) (%rax)

- C)0(%rax)

- D) (,%rax, 1)
- E)O(,%rax, 1)

I Basic x86-64 instructions

e Data movement: "mov"

— Copies data from first operand to second operand
 E.g.,, mov $1, %rax will set the value of %rax to 1

e Arithmetic: "add", "sub", "1mu L"

- Performs operation, saving result in second operand

 E.g., add %rcx, %rax will add the value of %rcx to the value of %rax
* (Note lack of division)

e Bitwise: "and", "or", "xor"

- Performs operation, saving result in second operand

 E.g., xor %rcx, %rax will XOR the values of %rcx and %rax, saving the
result in %rax

I Basic x86-64 instructions

« Control flow: change the PC with Jjmp (%rip cannot be set directly)

- Label (name followed by “:") marks a location in code that can be “jumped to”
* E.g., “foo0:”

— jmp: Jump to a given label
* E.g., jmp foo Will “jJump to” label “fo0”

e Conditionals: "cmp" followed immediately by "je" or "jne"

- cmp: Compares operand values
- je: If the values were equal, jump to a label
* E.g., cmp %rax, $0 followed by je foo will jump to label “foo” if the value of %rax was zero
- jne: If the values were not equal, jump to a label
 E.g., cmp %rax, $0 followed by jne foo will jump to label “foo” if the value of %rax was NOT zero

 What is the value of %rax after these instructions execute?
mov $5, %rcx
and $0, %rax
cmp $0, %rcx
je skip

add %rcx, %rax
skip:
sub $1, %rax

- A0
- B)1
- C)4
- D)5
- E) Cannot be determined

I Hand-writing x86_ 64 assembly

* Minimal template (returns O; known to work on stu):

.globl main # makes “main” a global symbol
main: # execution will start here
mov $0, %rax # your code goes here
ret # “return from “main”

e Save in .s file and build with gcc as usual (don’t use “-c” flag)

- Run program and view return value (final value of %rax) in bash with “echo $?”
* Use gdb to trace execution

- start: begin execution and pause at main

- disas: print disassembly of current function

- ni: next instruction (step over function calls)

- si: step instruction (step into function calls)

- p/x $rax: print value of RAX (note “$” instead of “%”")

- info registers: print values of all registers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20

