CS 261 Fall 2023

Mike Lam, Professor

Computer Systems I

Welcome! Please sit at an available table.

Grab an index card, fold it in half, write your name (and nickname / pronouns if you wish), and stand it up facing the others at your table. Introduce yourselves and discuss the following question:

What will be the output of the following C program?

```
#include <stdio.h>
int main() {
    int x = 40000;
    int y = 50000;
    if ((x * x) < (y * y)) {
        printf("Less than\n");
    } else {
        printf("Not less than\n");
    }
    return 0;
}</pre>
```

(hint: try it on stu!)

Be ready to report out as your table at the beginning of class!

Question

What will be the output of this C program?

```
#include <stdio.h>
int main() {
    double a = 1e20;
    double b = -a;
    double c = 3.14;
    if (((a+b) + c) == (a + (b+c))) {
        printf("Equal!\n");
    } else {
        printf("Not equal!\n");
    }
    return 0;
}
```

- A) "Equal!"
- B) "Not equal!"
- C) Neither of the above

Question

 Which of the following versions of a "matrix copy" routine will run the fastest?

```
- A) for (int i = 0; i < 2048; i++) {
    for (int j = 0; j < 2048; j++) {
        dst[i][j] = src[i][j];
    }
}
- B) for (int j = 0; j < 2048; j++) {
    for (int i = 0; i < 2048; i++) {
        dst[i][j] = src[i][j];
    }
}</pre>
```

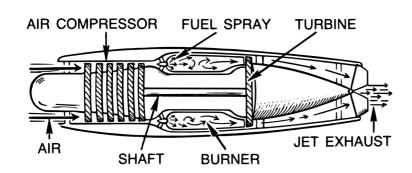
 C) Neither; they will always run at approximately the same speed.

What's happening?

 Something about our mental model of these programs does not match the system on which we're running them.

What is a "system?"

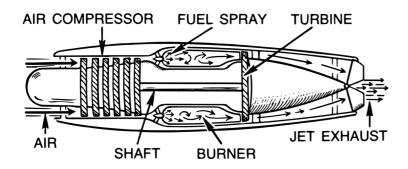
- What is a "system?"
 - Set of interacting components
 - More than the sum of its parts

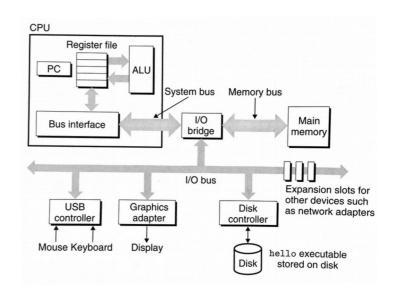


Computer

Jet engine

- What is a "system?"
 - Set of interacting components
 - More than the sum of its parts

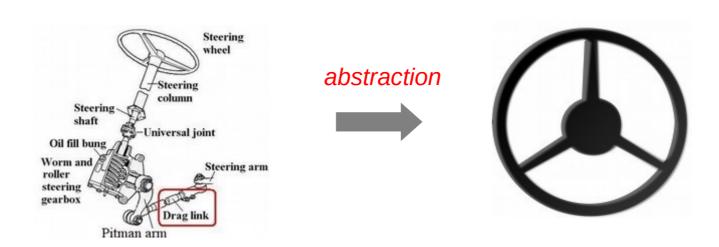




Jet engine

Computer

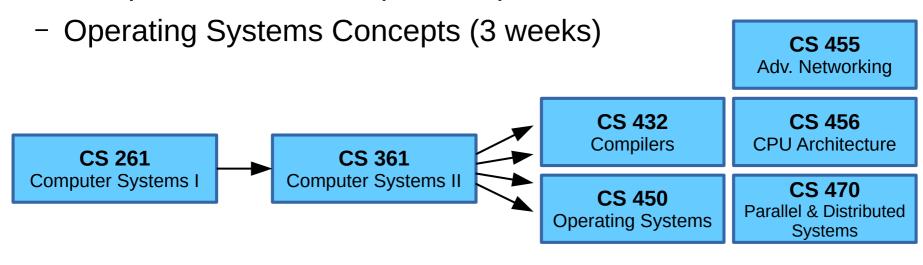
- What is a "system?"
 - Set of interacting components
 - More than the sum of its parts



Jet engine Computer

- A computer system consists of multiple hardware and software components that work together to run user applications.
 - We use complex computer systems every day
 - Our goal: peel back (some of) the complexity
 - See (some of) what's "under the hood"

- What is a process? What is a file?
 - These are examples of abstraction; "fake" views of reality that reduce complexity for users
 - Key ideas: ignore details and focus on interfaces
 - Especially important in large, complicated systems
 - Understanding abstractions can improve your ability to use them effectively

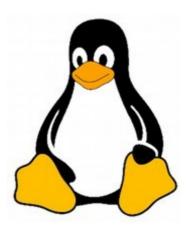


Course Objectives

- Explain machine-level representation of data and code
- Summarize the architecture of a computer
- Explain how complex systems are built from simple components
- Translate high-level code into assembly and machine language
- Write code to emulate the functionality of a computer
- Cultivate a sense of control over computer systems
- Gain an appreciation for software development tools
- Develop a sense of play when writing code
- Appreciate the complexity of systems-level software

Systems courses

- CS 261 units:
 - C and Linux (3 weeks)
 - Binary Representations (2-3 weeks)
 - Assembly and Machine Code (2-3 weeks)
 - Computer Architecture (3 weeks)


Fundamentals of digital, single-process systems

Multi-process systems and networking

In-depth study of a particular kind of complex system

CS 261

- What this course is NOT:
 - Programming 101 I will assume you can program
 - However, we will spend a few weeks learning C
 - Electronics 101 we won't be going THAT deep
 - If you're interested, see PHYS 140/150 or 240/250 then 371/372
 - Linux 101 but you have the Unix Users Group
 - Weekly meetings: Wed, 6:30pm, in King Hall 236
 - https://www.jmunixusers.org

CS 261

- This is not an "easy" course
 - But you can succeed!
 - I will set you up for success
- Commit to prioritize this course
 - Be prepared to read and work a lot
 - Don't be afraid to experiment
 - Practice a growth mindset: "I can't do it YET"
 - Take advantage of office hours and Piazza
 - Start projects early and ask questions

Semester-specific info

- The remaining slides are specific to Fall 2023
 - All slides are posted on the website (calendar page)
- Health and safety concerns
 - If you test positive for COVID or the flu, or are coughing and/or sneezing frequently, please stay home
 - Contact me ASAP regarding missed class
 - If you feel ill but well enough to attend class (and are NOT coughing/sneezing frequently), please consider wearing a surgical or N95/KN95 mask to protect others
 - These policies may change
 - Changes will be announced via Canvas message

Course Design

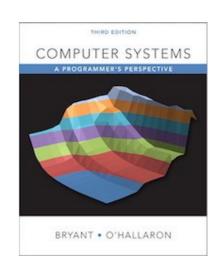
- This is a flipped class (except for today)
 - Research shows active learning > passive learning
 - Ahead of time: watch lecture, do reading, take quiz
 - During class: work on labs in small groups
 - Outside class: work on projects, take module tests

	Monday	Tuesday	Wednesday	Thursday	Friday
In-class		Lab		Lab	
Out-of-class	Lecture videos, reading, and quiz		Lecture videos, reading, and quiz		
	Project work	Project work	Project work	Project work	Project work (deadlines every 2-3 weeks)

Video playlists, quizzes, and labs all have a common tag (today's is "01")

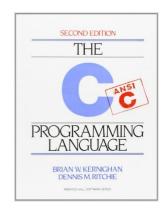
Course Components

- Public website (w3.cs.jmu.edu/lam2mo/cs261)
 - Syllabus, calendar, project descriptions, and resources
 - Links to lecture videos (YouTube, already posted)
 - · Most recorded for Fall 2020; all still relevant this year
 - Links to slides (Fall 2022 versions posted)
 - Some Fall 2023 revisions may be posted as well if needed


Canvas course

- Quizzes, lab submissions, and module tests
- Grades and private files (e.g., lab solutions)
- Access to Piazza Q&A
- Student server (stu.cs.jmu.edu)
 - Project development and submission
- Piazza
 - Q&A (especially re: projects)

Make sure you can access ALL of these!


Textbooks

- Required textbook: "Computer Systems"
 - "CS:APP" textbook from Carnegie-Mellon
 - A practical, example-filled introduction
 - Electronic rental available via RedShelf
 - Reserve copy at the Rose library

Important: Readings are listed on their associated quiz

- Recommended book: "The C Programming Language"
 - Brian Kernighan and Dennis Ritchie (creator of C)
 - This is "the book" about C (we'll refer to it as "CPL")
 - Scanned excerpts on Canvas (do not redistribute!)
 - Reserve copy at the Rose library

Course Grades

Quizzes and Labs	25%
Programming Projects	25%
Module Tests	15%
Exams	35%

- Quizzes and labs are formative
 - Designed to help you learn
- Tests/exams are summative
 - Designed to assess what you have learned
- Projects are both
 - Designed to help you learn C and reinforce other course concepts
 - Also designed to assess whether you are ready for CS 361

Class Policies

- Class attendance is necessary and expected
 - We will be completing labs most class periods
 - Find a group (2-4 people) to work with consistently
 - Use a name card for the first half of the of semester
- Every person should fill out a separate copy of the lab
 - Work together and check each other
 - Ask for help when you are stuck or want to confirm something
 - Getting "stuck" or confused is intended; it's how you learn!
 - Resist the urge to "speedrun" the labs or to work solo

Class Policies

- Submit as PDF on Canvas/Gradescope when done
 - Scan as a black-and-white PDF
 - Instructions: https://wiki.cs.jmu.edu/student/canvas/start
 - DO NOT submit raw photos
 - Double-check to make sure it "went through" and that it is legible
 - Submit before leaving class even if you're not done yet
 - Guarantees at least partial credit if you don't finish or forget to submit later
- Labs are "lightly graded" (w/o individual mistakes marked)
 - Solutions will be posted on Canvas (under Files → Lab Solutions)
 - Bring your solution to the next class for review
 - Come to office hours if you have further questions

- The projects in this course are VERY important!
 - One purpose of this course is to ensure you are ready to tackle harder projects in CS 361 and the system electives
- Projects are individual and mandatory
 - A "good faith" submission shows evidence of significant work and investment in writing a solution
 - A good faith submission gets you an "F" (25 points) instead of a zero (!!), in terms of a numeric grade
 - Doing at least this on every project is required to pass the class

- The JMU Honor Code applies on ALL assignments
 - Violations may be sent to the honor council
 - See relevant section in the syllabus
 - All online quizzes and module tests must be completed by yourself with no assistance aside from what is allowed in the assignment description in Canvas
- All submitted labs must represent YOUR work
 - You will work in groups to discuss the answers
 - By submitting a PDF on Canvas, you are asserting that these answers are YOUR answers and that you understand WHY you have answered the way you have

- All submitted project code must be YOUR work entirely
 - You may work in groups to discuss general approaches (in fact, I encourage this; use pseudocode if necessary)
 - However, one goal of the projects in this course is to develop individual competency in C, so you may NOT share code with anyone who is not a TA or CS 261 instructor
 - This includes letting someone examine or take a screenshot of your code, or "talking it through" with them line-by-line
 - This also includes using an AI-assist tool (e.g., Github Copilot)
 - If you co-work, sit such that you can't see each other's screens
 - Do not store your solution in a public repository
 - If you have questions about this, please ask!

- There are a total of four sections of CS 261
 - Two Lam sections and two Rizvi sections (all T-Th)
 - Some course materials are shared
 - You are welcome to study with students from other sections, but you must attend and submit assignments to the section you are registered for
 - DO NOT assume assignments are identical or that due dates align

Office hours

- My drop-in office hours are posted on Canvas
 - In person: King Hall 227
 - If I'm unavailable when you arrive, scan the QR code by my door
 - You'll join the same queue as virtual attendees and I will call you when I'm available (you'll leave a cell number as part of sign-up)
 - Virtual via Zoom: bit.ly/lam-office-hours-fa23
 - This is sometimes preferred for coding questions
 - Be prepared to share your screen, and leave your webcam on!
 - Other meetings via appointment: calendly.com/lam2mo
- CS TAs: in-person and virtual office hours: bit.ly/CS-TAs
 - 261-specific TAs TBD

TODOs in the next few days

- If you haven't already:
 - Take welcome survey on Canvas
 - Take syllabus quiz on Canvas (due Friday)
 - Read CS:APP Ch. 1 and take Quiz 01 (due Friday)
- Before class next Tuesday:
 - Review these slides and the syllabus and come with questions
 - Watch "Command line and C compilation" lecture videos
 - Read 02-CPL excerpts (on Canvas under Files → Readings)
 - Take Quiz 02 (posted tomorrow, due next Monday)
 - Make sure you can log into stu
 - Instructions at the top of Tuesday's lab: w3.cs.jmu.edu/lam2mo/cs261/02-cmd line.html
 - Make sure you can access Piazza
 - Skim the project guide and Project 0 description (on website)

Intro lab

- Material from Chapter 1
 - Front page: Computer Organization
 - Back page: C Compilation
- Submit as PDF on Canvas when done
 - Scan as a black-and-white PDF
 - Instructions: https://wiki.cs.jmu.edu/student/canvas/start
 - DO NOT submit raw photos, and double-check for legibility!
 - Let me know after you submit and I will check it on my end
 - Once you have verified a satisfactory submission, please feel free to leave – I'll see you next Tuesday!

Closing exhortations

- Take care of yourself
 - And if you can, someone else
 - Build (or reconnect with) a support network
 - Protect your boundaries
 - Carve out time to disconnect and rest
 - Talk to someone if things start getting overwhelming
- Have a great semester!