CS 261 Fall 2022

Mike Lam, Professor

HEY, CHECK IT OUT: et - IT IS DURING A COMPETITION, I THAT'S YEAH, THEY DUG THROUGH 19.999099979. THAT'S WEIRD. AWFUL. HALF THEIR ALGORITHMS TOLD THE PROGRAMMERS ON OUR TEAM THAT e^{π} - π LOOKING FOR THE BUG YEAH. THAT'S HOW I BEFORE THEY FIGURED WAS A STANDARD TEST OF FLOATING-GOT KICKED OUT OF IT OUT. POINT HANDLERS -- IT WOULD THE ACM IN COLLEGE. COME OUT TO 20 UNLESS ... WHAT? THEY HAD ROUNDING ERRORS.

https://xkcd.com/217/

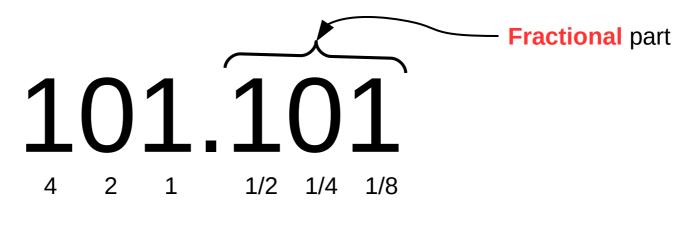
Floating-Point Numbers

Floating-point

- Topics
 - Binary fractions
 - Floating-point numbers
 - Issues with floating point
 - Formats and tradeoffs
 - Conversions

Binary fractions

- Extend positional binary integers to store fractions
 - Designate a certain number of bits for the fractional part
 - These bits represent negative powers of two
 - (Just like fractional digits in decimal fractions!)
 - (Also note it's now a "binary point" not a "decimal point")



4 + 1 + 0.5 + 0.125 = **5.625**

Another problem

- For scientific applications, we want to be able to store a wide *range* of values
 - From the scale of galaxies down to the scale of atoms
- Doing this with fixed-precision numbers is difficult
 - Even signed 64-bit integers
 - Perhaps allocate half for whole number, half for fraction
 - Range: ~2 x 10⁻⁹ through ~2 x 10⁹

Floating-point numbers

- Scientific notation to the rescue!
 - [–] Traditionally, we write large (or small) numbers as $x \cdot 10$
 - This is how floating-point representations work
 - Store exponent and fractional parts (the significand) separately

е

- The fractional point "floats" on the number line
- Position of point is based on the exponent

Floating-point numbers

- Floating-point numbers: base-2 scientific notation $(x \cdot 2)$
 - Fixed width field
 - Reserve one bit for the sign bit (0 is positive, 1 is negative)
 - [–] Reserve n bits for biased exponent (bias is 2^{n-1} 1)
 - Use remaining bits for normalized fraction (implicit leading 1)
 - Exception: if the exponent is zero, don't normalize

$$2.5 \rightarrow \underbrace{0 \ 1000 \ 010}_{\text{A}}_{\text{Sign (+)}} \int \underbrace{1000 \ 010}_{\text{Significand: (1).01}_{2}}_{\text{Significand: (1).01}_{2}} = 1.25$$

Value = $(-1)^{s} \times 1.f \times 2^{E} = (-1)^{0} \times 1.25 \times 2^{1} = 2.5$

Aside: Offset binary

- Alternative to two's complement
 - [–] Actual value is stored value minus a constant K (in FP: 2^{n-1} 1)
 - Also called biased or excess representation
 - Ordering of actual values is more natural

Example range	<u>Binary</u>	<u>Unsigned</u>	<u>Two's C</u>	<u> Offset-127</u>
(int8_t):	0000 0001	0	0	-127
	0000 0001	1	1	-126
	0111 1110	126	126	-1
	0111 1111	127	127	0
	1000 0000	128	-128	1
	1000 0001	129	-127	2
	1111 1110	254	-2	127
	1111 1111	255	-1	128

Description	Bit representation	е	Ε	2^E	f	М	$2^E \times M$	V	Decimal
Zero	0 0000 000	0	-6	$\frac{1}{64}$	$\frac{0}{8}$	$\frac{0}{8}$	$\frac{0}{512}$	0	0.0
Smallest positive	0 0000 001	0	-6	$\frac{1}{64}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{512}$	$\frac{1}{512}$	0.001953
"denormal"	0 0000 010	0	-6	$\frac{1}{64}$	$\frac{2}{8}$	$\frac{2}{8}$	$\frac{2}{512}$	$\frac{1}{256}$	0.003906
numbers provide gradual underflow near zero	0 0000 011 :	0	-6	$\frac{1}{64}$	$\frac{3}{8}$	<u>3</u> 8	$\frac{3}{512}$	$\frac{3}{512}$	0.005859
Largest denormalized	0 0000 111	0	-6	$\frac{1}{64}$	$\frac{7}{8}$	$\frac{7}{8}$	$\frac{7}{512}$	$\frac{7}{512}$	0.013672
Smallest normalized	0 0001 000	1	-6	$\frac{1}{64}$	$\frac{0}{8}$	88	$\frac{8}{512}$	$\frac{1}{64}$	0.015625
	0 0001 001	1	-6	$\frac{1}{64}$	$\frac{1}{8}$	9 8	$\frac{9}{512}$	$\frac{9}{512}$	0.017578
	:								
values < 1	0 0110 110	6	-1	$\frac{1}{2}$	$\frac{6}{8}$	$\frac{14}{8}$	$\frac{14}{16}$	$\frac{7}{8}$	0.875
	0 0110 111	6	-1	$\frac{1}{2}$	$\frac{7}{8}$	$\frac{15}{8}$	$\frac{15}{16}$	$\frac{15}{16}$	0.9375
One	0 0111 000	7	0	1	$\frac{0}{8}$	<u>8</u> 8	888	1	1.0
	0 0111 001	7	0	1	$\frac{1}{8}$	<u>9</u> 8	<u>9</u> 8	$\frac{9}{8}$	1.125
values > 1	0 0111 010 :	7	0	1	$\frac{2}{8}$	$\frac{10}{8}$	$\frac{10}{8}$	$\frac{5}{4}$	1.25
	0 1110 110	14	7	128	<u>6</u> 8	$\frac{14}{8}$	<u>1792</u> 8	224	224.0
Largest normalized	0 1110 111	14	7	128	$\frac{7}{8}$	$\frac{15}{8}$	$\frac{1920}{8}$	240	240.0
Infinity	0 1111 000	_	_			_	_	∞	_

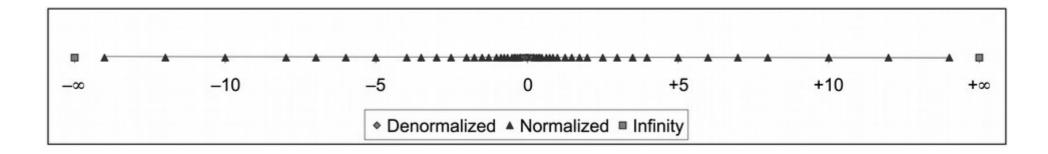
Figure 2.35 Example nonnegative values for 8-bit floating-point format. There are k = 4 exponent bits and n = 3 fraction bits. The bias is 7. *what about values higher than this one?*

Floating-point issues

- Rounding error is the value lost during conversion to a finite significand
 - Machine epsilon gives an upper bound on the rounding error
 - (Multiply by value being rounded)
 - Can compound over successive operations
- Lack of associativity caused by intermediate rounding
 - Prevents some compiler optimizations
- Cancellation is the loss of significant digits during subtraction
 - Can magnify error and impact later operations

```
double b = -a;
                                         2.491264 (7)
                                                                1.613647
                                                                           (7)
double c = 3.14;
                                       -2.491252 (7)
                                                             - 1.613647
                                                                           (7)
if (((a + b) + c) == (a + (b + c))) {
                                         0.000012
                                                    (2)
                                                               0.000000
                                                                           (0)
   printf ("Equal!\n");
} else {
   printf ("Not equal!\n");
                                       (5 digits cancelled)
                                                             (all digits cancelled)
}
```

Floating-point numbers



Not evenly spaced! (as integers are)

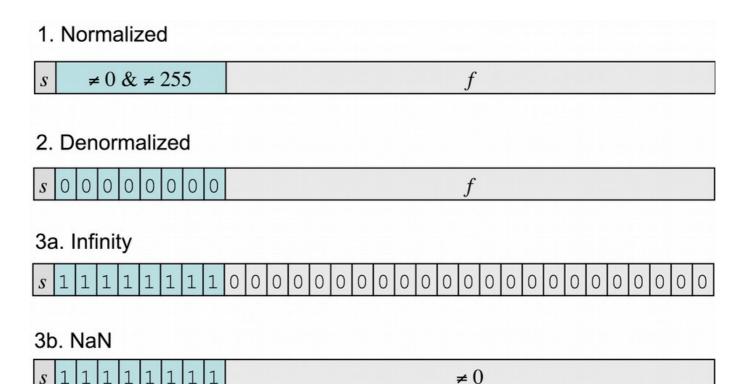
Adding a least-significant digit adds more value with a higher exponent than with a lower exponent

Floating-point demonstration using Super Mario 64:

https://www.youtube.com/watch?v=9hdFG2GcNuA

NaNs

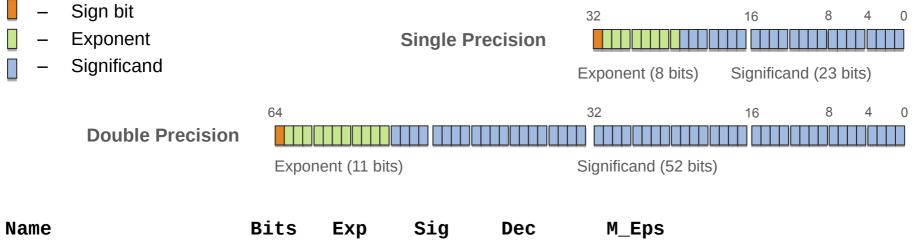
- NaN = "Not a Number"
 - Result of 0/0 and other undefined operations
 - Propagate to later calculations



Floating-point issues

- Many numbers cannot be represented exactly, regardless of how many bits are used!
 - E.g., $0.1_{10} \rightarrow 0.0001100110011001100_2 \dots$
- This is no different than in base 10
 - E.g., 1/3 = 0.333333333 ...
- If the number can be expressed as a sum of negative powers of the base, it can be represented exactly
 - Assuming enough bits are present

Floating-point standards



	DICO	-76	e=g	200	
bfloat16	16	8	7+1	2.408	7.81e-03
IEEE half	16	5	10+1	3.311	9.77e-04
IEEE single	32	8	23+1	7.225	1.19e-07
IEEE double	64	11	52+1	15.955	2.22e-16
IEEE quad	128	15	112+1	34.016	1.93e-34

NOTES:

- Sig is <explicit>[+<implicit>] bits
- $\text{Dec} = \log_{10}(2^{\text{Sig}})$
- M_Eps (machine epsilon) = $b^{(-(p-1))} = b^{(1-p)}$

(upper bound on relative error when rounding to 1)

Floating-point issues

- Single vs. double precision choice
 - Theme: system design involves tradeoffs
 - Single precision arithmetic is **faster**
 - Especially on GPUs (vectorization & bandwidth)
 - Double precision is more accurate
 - More than twice as accurate!
 - Which do we use?
 - And how do we justify our choice?
 - Does the answer change for different regions of a program?
 - Does the answer change for different periods during execution?
 - This is an open research question (talk to me if you're interested!)

Question

- Which of the following conversions are "safe" (i.e., the value can always be preserved)?
 - A) 32-bit signed int \rightarrow 32-bit floating-point
 - B) 32-bit signed int \rightarrow 64-bit floating-point
 - C) 32-bit floating-point \rightarrow 32-bit signed int
 - D) 32-bit floating-point \rightarrow 64-bit signed int
 - E) 32-bit floating-point \rightarrow 64-bit floating-point
 - F) 64-bit floating-point \rightarrow 32-bit floating-point

Conversion and rounding

_	
Tn	•
IU	

		Int32	Int64	Float	Double
	Int32	-	-	R	-
From:	Int64	0	-	R	R
	Float	OR	OR	-	-
	Double	OR	OR	OR	_

O = overflow possible *R* = rounding possible

"-" is safe

Rounding

Mode	\$1.40	\$1.60	\$1.50	\$2.50	\$-1.50
Round-to-even	\$1	\$2	\$2	\$2	\$-2
Round-toward-zero	\$1	\$1	\$1	\$2	\$-1
Round-down	\$1	\$1	\$1	\$2	\$-2
Round-up	\$2	\$2	\$2	\$3	\$-1

Figure 2.37 Illustration of rounding modes for dollar rounding. The first rounds to a nearest value, while the other three bound the result above or below.

Round-to-even: round to nearest, on ties favor even numbers to avoid statistical biases

In binary, to round to bit *i*, examine bit *i*+1:

- If 0, round down
- If 1 and any of the bits following are 1, round up
- Otherwise, round up if bit *i* is 1 and down if bit *i* is 0

Manual conversions

- To fully understand how floating-point works, it helps to do some conversions manually
 - This is unfortunately a bit tedious and very error-prone
 - There are some general guidelines that can help it go faster
 - You will get better and faster with practice
 - Use the fp.c utility (github.com/lam2mo/fp) to generate practice problems and test yourself!
 - Compile: gcc -o fp fp.c -lm

. . .

- Run:./fp <exp_len> <sig_len>
- It will generate all positive floating-point numbers using that representation
- Choose one and convert the binary to decimal or vice versa

0 1011 000 normal: sign=0 e=11 bias=7 E=4 2^E=16 f=0/8 M=8/8 2^E*M=128/8 val=16.000000 58 sign=0 e=11 bias=7 E=4 2^E=16 f=1/8 M=9/8 2^E*M=144/8 0 1011 001 59 normal: val=18.000000 bias=7 E=4 2^E=16 f=2/8 M=10/8 2^E*M=160/8 val=20.000000 0 1011 010 5a normal: sign=0 e=11 0 1011 011 5b normal: sign=0 e=11 bias=7 E=4 2^E=16 f=3/8 M=11/8 2^E*M=176/8 val=22.000000

Textbook's technique

- e: The value represented by considering the exponent field to be an unsigned integer
- E: The value of the exponent after biasing
- 2^E : The numeric weight of the exponent
- f: The value of the fraction
- M: The value of the significand
- $2^E \times M$: The (unreduced) fractional value of the number
- V: The reduced fractional value of the number
- Decimal: The decimal representation of the number

If this technique works for you, great! If not, here's another perspective...

Converting floating-point numbers

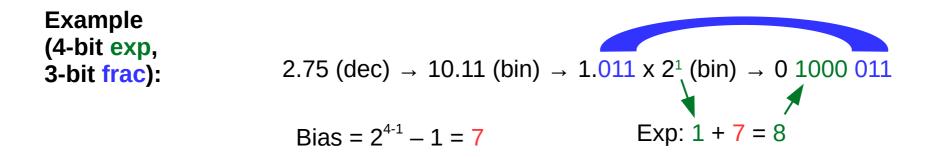
- Floating-point \rightarrow decimal:
 - 1) Sign bit (s):
 - Value is negative iff set
 - 2) Exponent (e):
 - All zeroes: denormalized (E = 1-bias)
 - All ones: NaN unless f is zero (which is infinity) DONE!
 - Otherwise: normalized (E = *e*-bias)
 - 3) Significand (*f*):
 - If normalized: $M = 1 + f/2^{m}$ (where *m* is the # of fraction bits)
 - If denormalized: $M = f / 2^m$ (where *m* is the # of fraction bits)
 - ⁻ 4) Value = (-1)^s x M x 2^{^E}

Note: bias = $2^{n-1} - 1$

(where *n* is the # of exp bits)

Converting floating-point numbers

- Decimal \rightarrow floating-point (normalized only)
 - 1) Convert to unsigned fractional binary format
 - Set sign bit
 - 2) Normalize to 1.xxxxx
 - Keep track of how many places you shift left (negative for shift right)
 - The "xxxxxx" bit string is the significand (pad with zeros on the right)
 - If there aren't enough bits to store the entire fraction, the value is rounded
 - 3) Encode resulting binary/shift offset (E) using bias representation
 - Add bias and convert to unsigned binary
 - If the exponent cannot be represented, result is zero or infinity



Note: bias = $2^{n-1} - 1$

(where *n* is the # of exp bits)