CS 261 Fall 2022

Mike Lam, Professor

Binary Arithmetic

Binary Arithmetic

- Topics
- Basic addition
- Overflow
- Multiplication \& division
- Floating-point preview

Basic addition

- Binary and hex addition are fundamentally the same as decimal addition
- Add digit-by-digit, using a carry as necessary
- Result could require one more bit than the operands

Figure 2.21 Integer addition. With a 4-bit word size, the sum could require S bits.

Basic addition

- Binary and hex addition are fundamentally the same as decimal addition
- Add digit-by-digit, using a carry as necessary
- Result could require one more bit than the operands

Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 bits.

Overflow

- Unsigned addition is subject to overflow
- Caused by truncation to integer size

(assume a 16-bit integer)

Figure 2.23 Unsigned addition. With a 4-bit word size, addition is performed
modulo 16.

Overflow

- Two's complement addition is identical to unsigned mechanically
- Subject to both positive and negative overflow
- Overflows if carry-in and carry-out differ for sign bit
- Same for subtraction (overflows if borrow-in and borrow-out of sign bit differ)

Figure 2.24
Relation between integer and two's-complement addition. When $x+y$ is less than -2^{w-1}, there is a negative overflow. When it is greater than or equal to 2^{w-1}, there is a positive overflow.

Two's complement addition (4-bit word)

Figure 2.26 Two's-complement addition. With a 4-bit word size, addition can have a negative overflow when $x+y<-8$ and a positive overflow when $x+y \geq 8$.

NOTE: this figure is printed incorrectly in your textbook!

- Examples (in 4-bit two's complement):

No carry in, no carry out (OK)

Carry in, carry out (OK)

Carry in, no carry out (OVERFLOW!)

$$
\begin{array}{rrrrr}
0 & 0 & 0 & 1 & \text { 2's Comp. } \\
1 & 1 & 1 & 0 & +\frac{-2}{-1} \\
\hline 1 & 1 & 1 & 1 &
\end{array}
$$

No carry in, no carry out (OK)

Case study: MTG Arena

- "Evra, Halcyon Witness"
- Card from Magic: The Gathering Arena (PC video game)
- Ability: gain player life equal to Evra's power ("lifelink")
- Ability: exchange player life total w/ Evra's power
- Alternate abilities to double life every few turns
- Overflows at ~ 2 billion b/c player life is stored as a signed 32-bit integer

https://www.youtube.com/watch?v=8cqID9lpC3I

Multiplication \& division

- Like addition, fundamentally the same as base 10
- Actually, it's even simpler!
- Same regardless of encoding
- Special case: multiply by powers of 2 (shift left)

- Division is expensive!
- Special case: divide by powers of two (shift right)
- Logical shift for unsigned numbers, arithmetic shift for signed numbers

Review

- One-byte integers:

Binary		Unsigned	
Two's C			
11111111		255	-1
11111110		254	-2
\ldots		\ldots	\cdots
10000001		129	-127
10000000		128	-128
01111111		127	127
01111110		126	126
\ldots		\ldots	\ldots
00000001	1	1	
00000000	0	0	

Figure 2.24
Relation between integer and two's-complement addition. When $x+y$ is less than -2^{w-1}, there is a negative overflow. When it is greater than or equal to 2^{w-1}, there is a positive overflow.

Overflow
when x + y > 255

Positive overflow when $x+y>127$
Negative overflow when $x+y<-128$

Binary fractions

- Now we can store integers
- But what about general real numbers?
- Extend positional binary integers to store fractions
- Designate a certain number of bits for the fractional part
- These bits represent negative powers of two
- (Just like fractional digits in decimal fractions!)

$$
\begin{aligned}
& \underbrace{}_{4} \underbrace{}_{1} \cdot \underbrace{}_{1 / 2} \underbrace{}_{1 / 4} \underbrace{}_{1 / 8} \\
& 4+1+0.5+0.125=5.625
\end{aligned}
$$

Another problem

- For scientific applications, we want to be able to store a wide range of values
- From the scale of galaxies down to the scale of atoms
- Doing this with fixed-precision numbers is difficult
- Even signed 64-bit integers
- Perhaps allocate half for whole number, half for fraction
- Range: $\sim 2 \times 10^{-9}$ through $\sim 2 \times 10^{9}$

Floating-point numbers

- Scientific notation to the rescue!
- Traditionally, we write large (or small) numbers as $x \cdot 10^{e}$
- This is how floating-point representations work
- Store exponent and fractional parts (the significand) separately
- The decimal point "floats" on the number line
- Position of point is based on the exponent

$$
\begin{array}{rl}
0.0123 \times 10^{2} \\
0.123 \times 10^{1} \\
1.23 & 1.23 \times 10^{0} \\
12.3 \times 10^{-1} \\
123.0 \times 10^{-2}
\end{array}
$$

Floating-point numbers

- However, computers use binary
- So floating-point numbers use base 2 scientific notation ($x \cdot 2^{e}$)
- Fixed width field
- Reserve one bit for the sign bit (0 is positive, 1 is negative)
- Reserve n bits for biased exponent (bias is $2^{n-1}-1$)
- Avoids having to use two's complement
- Use remaining bits for normalized fraction (implicit leading 1)
- Exception: if the exponent is zero, don't normalize

Exponent (8-7=1)

Value $=(-1)^{s} \times 1 . f \times 2^{E}$

