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Integers

● Topics
– C integer data types
– Unsigned encoding
– Signed encodings
– Conversions



  

Integer data types in C99

1 byte

2 bytes

2 bytes

4 bytes

4 bytes

8 bytes



  

Integer data types on stu

                char 1
       unsigned char 1

               short 2
      unsigned short 2

                 int 4
        unsigned int 4

                long 8
       unsigned long 8
           long long 8
  unsigned long long 8

int8_t 1
             uint8_t 1

bool 1

             int16_t 2
            uint16_t 2

             int32_t 4
            uint32_t 4

             int64_t 8
            uint64_t 8

size_t 8

All sizes in bytes; sizes in red are larger than mandated by C99



  

Unsigned integer encoding

● Bit i represents the value 2
i

– Bits typically written from most to least significant (i.e., 2
3
 2

2
 2

1
 2

0
)

– This is the same encoding we saw last time!
– No representation of negative numbers

1   =                    1 = 0∙23 + 0∙22 + 0∙21 + 1∙20 = [0001]

5   =        4       + 1 = 0∙23 + 1∙22 + 0∙21 + 1∙20 = [0101]

11 = 8 +        2 + 1 = 1∙23 + 0∙22 + 1∙21 + 1∙20 = [1011]

15 = 8 + 4 + 2 + 1 = 1∙23 + 1∙22 + 1∙21 + 1∙20 = [1111]



  

Unsigned integer encoding

● Textbook’s notation
– Each bar represents a bit
– Add together bars to represent the contributions of each 

bit value to the overall value



  

Signed integer encodings

● Sign magnitude
– Most natural/intuitive but hardest to implement

● Ones’ complement
– Cleaner arithmetic but less intuitive

● Two’s complement
– Cleanest arithmetic but most complicated
– Most modern signed integer types use this!



  

Sign magnitude

● Sign magnitude
– Interpret most-significant bit as a sign bit
– Interpret remaining bits as unsigned number x (the magnitude)

● If negative, absolute value is x 

– To negate: flip the sign bit
– Disadvantages:

● Two zeros: -0 and +0  [1000 and 0000]
● Less useful for arithmetic because the sign bit has no relationship with the 

magnitude--cannot use unsigned arithmetic logic!

0 011 = 3
1 011 = -3

0 111 = 7

0 111 (7)
1 011 (-3)

? 010



  

Question

● What is the negation of 10110 in sign 
magnitude?
– A) 10110
– B) 10111
– C) 01001
– D) 01011
– E) 01010
– F) 00110



  

Question

● Which of the following are negative numbers if 
interpreted as a sign magnitude integer?
– A) 10110
– B) 10111
– C) 01001
– D) 01011
– E) 01010
– F) 00110



  

Ones’ complement

● Ones’ complement
– Interpret most-significant bit as a sign bit
– Interpret ALL bits as unsigned integer x

● If negative, absolute value is [11111…1] - x

– To negate: flip all the bits (binary NOT)
– Disadvantages:

● Still have two representations of zero (1111 and 0000)
● Also, less useful for arithmetic than two’s complement

– Must “end-around carry” to preserve results

0 011 = 3
1 100 = -3

0 111 = 7

 1
 0 111 (7)
 1 100 (-3)

10 011
    +1 (end-around carry)
 0 100



  

Question

● What is the negation of 10110 in ones’ 
complement?
– A) 10110
– B) 10111
– C) 01001
– D) 01011
– E) 01010
– F) 00110



  

Question

● Which of the following are negative numbers if 
interpreted as a ones’ complement integer?
– A) 10110
– B) 10111
– C) 01001
– D) 01011
– E) 01010
– F) 00110



  

Two’s complement

● Two’s complement
– Interpret most-significant bit as a sign bit
– Interpret ALL bits as unsigned integer x

● If negative, absolute value is 2
N
 – x where N is the number of bits

– To negate: subtract value from 2
N
 where N is the number of bits

– One zero; positive numbers wrap to negative ones halfway through

2’s Comp. Unsigned

-1 1111 15
…

-7 1001 9
-8 1000 8
7 0111 7

…
1 0001 1
0 0000 0

negative
numbers



  

Two’s complement

● Two’s complement advantage: uses unsigned arithmetic logic
– (ignore carries out of the sign bit for now)

– Ex: 5 – 3 = 5 + (-3) = 0101 + 1101 = 0010 (2)
– Ex: 1 – 3 = 1 + (-3) = 0001 + 1101 = 1110 (-2)
– Ex: -2 – 3 = (-2) + (-3) = 1110 + 1101 = 1011 (-5)

0011 = 3
1100
1101 = -3

0111 = 7

 0111 (7)
 1101 (-3)

 0100 (4)



  

Two’s complement

● Alternate interpretation: value of most significant bit is negated
– i.e., start at most negative number and build back up towards zero



  

Two’s complement trick

● Alternate way to negate in two’s complement
– Flip the bits (binary NOT) then add one

Ex: 5 = 0101 → (binary NOT) → 1010 → (add one) → 1011 = -5  (-8 + 2 + 1)

Aside: Why does this work? The sum of a number x and ~x is all ones 
(or 2N-1 where N is the number of bits), so ~x can be expressed as 2N-1 
- x. Because negating x in two’s complement is equivalent to subtracting 
x from 2N, if we add one to ~x the results are equal:

~x + 1 = (2N-1 - x) + 1 = 2N - x



  

Question

● What is the negation of 10110 in two’s 
complement?
– A) 10110
– B) 10111
– C) 01001
– D) 01011
– E) 01010
– F) 00110



  

Question

● Which of the following are negative numbers if 
interpreted as a two’s complement integer?
– A) 10110
– B) 10111
– C) 01001
– D) 01011
– E) 01010
– F) 00110



  

Ones’ vs. Two’s

● Ones’ complement
– Interpret all bits as unsigned integer x

● Value is [11111…1] - x
● I.e., the complement with respect to ones

● Two’s complement
– Interpret all bits as unsigned integer x

● Value is 2
N
 – x where N is the number of bits

● I.e., the complement with respect to a power of two



  

Caution: language technicalities

● Ones’ complement and two’s complement are both an 
operation and an encoding
– E.g., “perform two’s complement” vs “the number is stored in two’s 

complement”
● The operation represents the action necessary to negate a 

number in that encoding.
– E.g., performing two’s complement (ones’ complement and add one) 

negates a number in two’s complement encoding
● If you have a value in a particular encoding:

– If the sign bit is not set, it’s a positive number
– If it is set, perform the operation to recover the positive value

We will avoid using the operation terminology in this course!



  

Integer encodings

● Information = Bits + Context
– What does “1011” mean?   It depends!

Unsigned: 11
Sign magnitude: -3
Ones' complement: -4
Two's complement: -5



  

Comparison

Binary     Unsigned Sign Mag Ones’ C Two’s C Offset-127

1111 1111 255 -127 -0 -1  128
1111 1110 254 -126 -1 -2  127
… … … … … …
1000 0001 129 -1 -126 -127  2
1000 0000 128 -0 -127 -128  1
0111 1111 127  127  127  127  0
0111 1110 126  126  126  126 -1
… … … … … …
0000 0001 1  1  1  1 -126
0000 0000 0  0  0  0 -127

● We’ll see one more signed integer encoding next week: 
“offset binary” / “biased” / “excess”
– For now, here’s a comparison (for 1-byte integers):



  

Question

● Which of the following are guaranteed to be 
“safe” (i.e., the value will always be preserved)?
– A) Smaller unsigned → larger unsigned
– B) Smaller two’s comp. → larger two’s comp.
– C) Larger → smaller (unsigned or two’s comp.)
– D) Unsigned → two’s comp.
– E) Two’s comp. → unsigned



  

Conversions

● Smaller unsigned → larger unsigned
– Safe; zero-extend to preserve value

● Smaller two’s comp. → larger two’s comp.
– Safe; sign-extend to preserve value

● Larger → smaller (unsigned or two’s comp.)
– Overflow if new type isn’t large enough to fit (truncate)

● Unsigned → two’s comp.
– Overflow if first bit is non-zero (otherwise, no change)

● Two’s comp. → unsigned
– Overflow if value is negative (otherwise, no change)

0101 (5)  → 0000 0101 (5)

1101 (-3) → 1111 1101 (-3)

0000 0101 (5)  → 0101 (5)
0011 0101 (53) → 0101 (5)

0101 (5)  → 0101 (5)
1101 (13) → 1101 (-3)

0101 (5)  → 0101 (5)
1101 (-2) → 1101 (13)
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