CS 261 Fall 2022

Mike Lam, Professor

https://xkcd.com/571/

Integer Encodings

Integers

- Topics
- C integer data types
- Unsigned encoding
- Signed encodings
- Conversions

Integer data types in C99

C data type	Minimum	Maximum	
[signed] char	-127	127	1 byte
unsigned char	0	255	
short	$-32,767$	32,767	2 bytes
unsigned short	0	65,535	
int	$-32,767$	32,767	2 bytes
unsigned	0	65,535	
long	$-2,147,483,647$	$2,147,483,647$	4 bytes
unsigned long	0	$4,294,967,295$	
int32_t	$-2,147,483,648$	$2,147,483,647$	4 bytes
uint32_t	0	$4,294,967,295$	
int64_t	$-9,223,372,036,854,775,808$	$9,223,372,036,854,775,807$	8 bytes
uint64_t	0	$18,446,744,073,709,551,615$	

Figure 2.11 Guaranteed ranges for \mathbf{C} integral data types. The C standards require that the data types have at least these ranges of values.

Integer data types on stu

All sizes in bytes; sizes in red are larger than mandated by C99

Unsigned integer encoding

- Bit i represents the value 2^{i}
- Bits typically written from most to least significant (i.e., $2^{3} 2^{2} 2^{1} 2^{0}$)
- This is the same encoding we saw last time!
- No representation of negative numbers

$$
\begin{array}{lll}
1= & 1 & =0 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2^{1}+\mathbf{1} \cdot 2^{0}=[0001] \\
5 & = & 4 \\
+\mathbf{1}=0 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+\mathbf{1} \cdot 2^{0}=[0101] \\
11 & =\mathbf{8}+ & 2+\mathbf{1}=\mathbf{1} \cdot 2^{3}+0 \cdot 2^{2}+\mathbf{1} \cdot 2^{1}+\mathbf{1} \cdot 2^{0}=[\mathbf{1 0 1 1}] \\
15 & =\mathbf{8}+4+\mathbf{2}+\mathbf{1}=\mathbf{1} \cdot 2^{3}+1 \cdot 2^{2}+\mathbf{1} \cdot 2^{1}+\mathbf{1} \cdot 2^{0}=[\mathbf{1 1 1 1}]
\end{array}
$$

Unsigned integer encoding

- Textbook's notation
- Each bar represents a bit
- Add together bars to represent the contributions of each bit value to the overall value

Figure 2.12
Unsigned number examples for $w=4$.
When bit i in the binary representation has value 1, it contributes 2^{i} to the value.

Signed integer encodings

- Sign magnitude
- Most natural/intuitive but hardest to implement
- Ones' complement
- Cleaner arithmetic but less intuitive
- Two's complement
- Cleanest arithmetic but most complicated
- Most modern signed integer types use this!

Sign magnitude

- Sign magnitude
- Interpret most-significant bit as a sign bit
- Interpret remaining bits as unsigned number x (the magnitude)
- If negative, absolute value is x
- To negate: flip the sign bit
- Disadvantages:
- Two zeros: -0 and +0 [1000 and 0000]
- Less useful for arithmetic because the sign bit has no relationship with the magnitude--cannot use unsigned arithmetic logic!

$$
\begin{aligned}
& 0011=3 \\
& 1011=-3 \\
& 0111=7
\end{aligned}
$$

$$
\begin{array}{lll}
0 & 111 & (7) \\
1 & 011 & (-3) \\
\hline ? & 010
\end{array}
$$

Question

- What is the negation of 10110 in sign magnitude?
- A) 10110
- B) 10111
- C) 01001
- D) 01011
- E) 01010
- F) 00110

Question

- Which of the following are negative numbers if interpreted as a sign magnitude integer?
- A) 10110
- B) 10111
- C) 01001
- D) 01011
- E) 01010
- F) 00110

Ones' complement

- Ones' complement
- Interpret most-significant bit as a sign bit
- Interpret ALL bits as unsigned integer x
- If negative, absolute value is [11111...1] - x
- To negate: flip all the bits (binary NOT)
- Disadvantages:
- Still have two representations of zero (1111 and 0000)
- Also, less useful for arithmetic than two's complement
- Must "end-around carry" to preserve results

$$
\begin{aligned}
& 0 \quad 011=3 \\
& 1100=-3 \\
& 0111=7
\end{aligned}
$$

```
                                    1
    0 111 (7)
1 100(-3)
10 011
        +1 (end-around carry)
    0 100
```


Question

- What is the negation of 10110 in ones' complement?
- A) 10110
- B) 10111
- C) 01001
- D) 01011
- E) 01010
- F) 00110

Question

- Which of the following are negative numbers if interpreted as a ones' complement integer?
- A) 10110
- B) 10111
- C) 01001
- D) 01011
- E) 01010
- F) 00110

Two's complement

- Two's complement
- Interpret most-significant bit as a sign bit
- Interpret ALL bits as unsigned integer x
- If negative, absolute value is $2^{N}-x$ where N is the number of bits
- To negate: subtract value from 2^{N} where N is the number of bits
- One zero; positive numbers wrap to negative ones halfway through

Two's complement

- Two's complement advantage: uses unsigned arithmetic logic
- (ignore carries out of the sign bit for now)
- Ex: $5-3=5+(-3)=0101+1101=0010(2)$
- Ex: $1-3=1+(-3)=0001+1101=1110(-2)$
- Ex: $-2-3=(-2)+(-3)=1110+1101=1011(-5)$
$0011=3$
1100
$1101=-3$

$0111=7$$\quad$| $0111(7)$ |
| :--- |

Two's complement

- Alternate interpretation: value of most significant bit is negated
- i.e., start at most negative number and build back up towards zero

Figure 2.12 Unsigned number examples for $w=4$. When bit i in the binary representation has value 1 , it contributes 2^{i} to the value.

Figure 2.16
Comparing unsigned and two's-complement representations for $w=4$. The weight of the most significant bit is -8 for two's complement and +8 for unsigned, yielding a net difference of 16 .

Two's complement trick

- Alternate way to negate in two's complement
- Flip the bits (binary NOT) then add one

$$
\text { Ex: } 5=0101 \rightarrow(\text { binary NOT }) \rightarrow 1010 \rightarrow(\text { add one }) \rightarrow 1011=-5(-8+2+1)
$$

Aside: Why does this work? The sum of a number x and $\sim x$ is all ones (or $2^{\mathrm{N}}-1$ where N is the number of bits), so $\sim \mathrm{x}$ can be expressed as $2^{\mathrm{N}}-1$ $-x$. Because negating x in two's complement is equivalent to subtracting x from 2^{N}, if we add one to $\sim x$ the results are equal:

$$
\sim x+1=\left(2^{N}-1-x\right)+1=2^{N}-x
$$

Question

- What is the negation of 10110 in two's complement?
- A) 10110
- B) 10111
- C) 01001
- D) 01011
- E) 01010
- F) 00110

Question

- Which of the following are negative numbers if interpreted as a two's complement integer?
- A) 10110
- B) 10111
- C) 01001
- D) 01011
- E) 01010
- F) 00110

Ones' vs. Two's

- Ones' complement
- Interpret all bits as unsigned integer x
- Value is [11111...1] - x
- I.e., the complement with respect to ones
- Two's complement
- Interpret all bits as unsigned integer x
- Value is $2^{N}-x$ where N is the number of bits
- I.e., the complement with respect to a power of two

Caution: language technicalities

- Ones' complement and two's complement are both an operation and an encoding
- E.g., "perform two's complement" vs "the number is stored in two's complement"
- The operation represents the action necessary to negate a number in that encoding.
- E.g., performing two's complement (ones' complement and add one) negates a number in two's complement encoding
- If you have a value in a particular encoding:
- If the sign bit is not set, it's a positive number
- If it is set, perform the operation to recover the positive value

We will avoid using the operation terminology in this course!

Integer encodings

- Information = Bits + Context
- What does "1011" mean? It depends!

Unsigned:
Sign magnitude: 11

Ones' complement: -4
Two's complement: -5

Comparison

- We'll see one more signed integer encoding next week: "offset binary" / "biased" / "excess"
- For now, here's a comparison (for 1-byte integers):

Binary	Unsigned	Sign Mag	Ones' C	Two's C	Offset-127
11111111	255	-127	-0	-1	128
11111110	254	-126	-1	-2	127
...	
10000001	129	-1	-126	-127	2
10000000	128	-0	-127	-128	1
01111111	127	127	127	127	0
01111110	126	126	126	126	-1
...
00000001	1	1	1	1	-126
00000000	0	0	0	0	-127

Question

- Which of the following are guaranteed to be "safe" (i.e., the value will always be preserved)?
- A) Smaller unsigned \rightarrow larger unsigned
- B) Smaller two's comp. \rightarrow larger two's comp.
- C) Larger \rightarrow smaller (unsigned or two's comp.)
- D) Unsigned \rightarrow two's comp.
- E) Two's comp. \rightarrow unsigned

Conversions

- Smaller unsigned \rightarrow larger unsigned

$$
0101(5) \rightarrow 00000101 \text { (5) }
$$

- Safe; zero-extend to preserve value
- Smaller two's comp. \rightarrow larger two's comp.
$1101(-3) \rightarrow 11111101(-3)$
- Safe; sign-extend to preserve value
- Larger \rightarrow smaller (unsigned or two's comp.)

00000101 (5) $\rightarrow 0101$ (5) 00110101 (53) $\rightarrow 0101$ (5)

- Overflow if new type isn't large enough to fit (truncate)
- Unsigned \rightarrow two's comp.
- Overflow if first bit is non-zero (otherwise, no change)
- Two's comp. \rightarrow unsigned
$1101(13) \rightarrow 1101(-3)$
- Overflow if value is negative (otherwise, no change)

```
0101 (5) -> 0101 (5)
1101 (-2) -> 1101 (13)
```

