

CS 261
Fall 2022

Mike Lam, Professor

Integer Encodings

https://xkcd.com/571/

Integers

● Topics
– C integer data types
– Unsigned encoding
– Signed encodings
– Conversions

Integer data types in C99

1 byte

2 bytes

2 bytes

4 bytes

4 bytes

8 bytes

Integer data types on stu

 char 1
 unsigned char 1

 short 2
 unsigned short 2

 int 4
 unsigned int 4

 long 8
 unsigned long 8
 long long 8
 unsigned long long 8

int8_t 1
 uint8_t 1

bool 1

 int16_t 2
 uint16_t 2

 int32_t 4
 uint32_t 4

 int64_t 8
 uint64_t 8

size_t 8

All sizes in bytes; sizes in red are larger than mandated by C99

Unsigned integer encoding

● Bit i represents the value 2
i

– Bits typically written from most to least significant (i.e., 2
3
 2

2
 2

1
 2

0
)

– This is the same encoding we saw last time!
– No representation of negative numbers

1 = 1 = 0∙23 + 0∙22 + 0∙21 + 1∙20 = [0001]

5 = 4 + 1 = 0∙23 + 1∙22 + 0∙21 + 1∙20 = [0101]

11 = 8 + 2 + 1 = 1∙23 + 0∙22 + 1∙21 + 1∙20 = [1011]

15 = 8 + 4 + 2 + 1 = 1∙23 + 1∙22 + 1∙21 + 1∙20 = [1111]

Unsigned integer encoding

● Textbook’s notation
– Each bar represents a bit
– Add together bars to represent the contributions of each

bit value to the overall value

Signed integer encodings

● Sign magnitude
– Most natural/intuitive but hardest to implement

● Ones’ complement
– Cleaner arithmetic but less intuitive

● Two’s complement
– Cleanest arithmetic but most complicated
– Most modern signed integer types use this!

Sign magnitude

● Sign magnitude
– Interpret most-significant bit as a sign bit
– Interpret remaining bits as unsigned number x (the magnitude)

● If negative, absolute value is x

– To negate: flip the sign bit
– Disadvantages:

● Two zeros: -0 and +0 [1000 and 0000]
● Less useful for arithmetic because the sign bit has no relationship with the

magnitude--cannot use unsigned arithmetic logic!

0 011 = 3
1 011 = -3

0 111 = 7

0 111 (7)
1 011 (-3)

? 010

Question

● What is the negation of 10110 in sign
magnitude?
– A) 10110
– B) 10111
– C) 01001
– D) 01011
– E) 01010
– F) 00110

Question

● Which of the following are negative numbers if
interpreted as a sign magnitude integer?
– A) 10110
– B) 10111
– C) 01001
– D) 01011
– E) 01010
– F) 00110

Ones’ complement

● Ones’ complement
– Interpret most-significant bit as a sign bit
– Interpret ALL bits as unsigned integer x

● If negative, absolute value is [11111…1] - x

– To negate: flip all the bits (binary NOT)
– Disadvantages:

● Still have two representations of zero (1111 and 0000)
● Also, less useful for arithmetic than two’s complement

– Must “end-around carry” to preserve results

0 011 = 3
1 100 = -3

0 111 = 7

 1
 0 111 (7)
 1 100 (-3)

10 011
 +1 (end-around carry)
 0 100

Question

● What is the negation of 10110 in ones’
complement?
– A) 10110
– B) 10111
– C) 01001
– D) 01011
– E) 01010
– F) 00110

Question

● Which of the following are negative numbers if
interpreted as a ones’ complement integer?
– A) 10110
– B) 10111
– C) 01001
– D) 01011
– E) 01010
– F) 00110

Two’s complement

● Two’s complement
– Interpret most-significant bit as a sign bit
– Interpret ALL bits as unsigned integer x

● If negative, absolute value is 2
N
 – x where N is the number of bits

– To negate: subtract value from 2
N
 where N is the number of bits

– One zero; positive numbers wrap to negative ones halfway through

2’s Comp. Unsigned

-1 1111 15
…

-7 1001 9
-8 1000 8
7 0111 7

…
1 0001 1
0 0000 0

negative
numbers

Two’s complement

● Two’s complement advantage: uses unsigned arithmetic logic
– (ignore carries out of the sign bit for now)

– Ex: 5 – 3 = 5 + (-3) = 0101 + 1101 = 0010 (2)
– Ex: 1 – 3 = 1 + (-3) = 0001 + 1101 = 1110 (-2)
– Ex: -2 – 3 = (-2) + (-3) = 1110 + 1101 = 1011 (-5)

0011 = 3
1100
1101 = -3

0111 = 7

 0111 (7)
 1101 (-3)

 0100 (4)

Two’s complement

● Alternate interpretation: value of most significant bit is negated
– i.e., start at most negative number and build back up towards zero

Two’s complement trick

● Alternate way to negate in two’s complement
– Flip the bits (binary NOT) then add one

Ex: 5 = 0101 → (binary NOT) → 1010 → (add one) → 1011 = -5 (-8 + 2 + 1)

Aside: Why does this work? The sum of a number x and ~x is all ones
(or 2N-1 where N is the number of bits), so ~x can be expressed as 2N-1
- x. Because negating x in two’s complement is equivalent to subtracting
x from 2N, if we add one to ~x the results are equal:

~x + 1 = (2N-1 - x) + 1 = 2N - x

Question

● What is the negation of 10110 in two’s
complement?
– A) 10110
– B) 10111
– C) 01001
– D) 01011
– E) 01010
– F) 00110

Question

● Which of the following are negative numbers if
interpreted as a two’s complement integer?
– A) 10110
– B) 10111
– C) 01001
– D) 01011
– E) 01010
– F) 00110

Ones’ vs. Two’s

● Ones’ complement
– Interpret all bits as unsigned integer x

● Value is [11111…1] - x
● I.e., the complement with respect to ones

● Two’s complement
– Interpret all bits as unsigned integer x

● Value is 2
N
 – x where N is the number of bits

● I.e., the complement with respect to a power of two

Caution: language technicalities

● Ones’ complement and two’s complement are both an
operation and an encoding
– E.g., “perform two’s complement” vs “the number is stored in two’s

complement”
● The operation represents the action necessary to negate a

number in that encoding.
– E.g., performing two’s complement (ones’ complement and add one)

negates a number in two’s complement encoding
● If you have a value in a particular encoding:

– If the sign bit is not set, it’s a positive number
– If it is set, perform the operation to recover the positive value

We will avoid using the operation terminology in this course!

Integer encodings

● Information = Bits + Context
– What does “1011” mean? It depends!

Unsigned: 11
Sign magnitude: -3
Ones' complement: -4
Two's complement: -5

Comparison

Binary Unsigned Sign Mag Ones’ C Two’s C Offset-127

1111 1111 255 -127 -0 -1 128
1111 1110 254 -126 -1 -2 127
… … … … … …
1000 0001 129 -1 -126 -127 2
1000 0000 128 -0 -127 -128 1
0111 1111 127 127 127 127 0
0111 1110 126 126 126 126 -1
… … … … … …
0000 0001 1 1 1 1 -126
0000 0000 0 0 0 0 -127

● We’ll see one more signed integer encoding next week:
“offset binary” / “biased” / “excess”
– For now, here’s a comparison (for 1-byte integers):

Question

● Which of the following are guaranteed to be
“safe” (i.e., the value will always be preserved)?
– A) Smaller unsigned → larger unsigned
– B) Smaller two’s comp. → larger two’s comp.
– C) Larger → smaller (unsigned or two’s comp.)
– D) Unsigned → two’s comp.
– E) Two’s comp. → unsigned

Conversions

● Smaller unsigned → larger unsigned
– Safe; zero-extend to preserve value

● Smaller two’s comp. → larger two’s comp.
– Safe; sign-extend to preserve value

● Larger → smaller (unsigned or two’s comp.)
– Overflow if new type isn’t large enough to fit (truncate)

● Unsigned → two’s comp.
– Overflow if first bit is non-zero (otherwise, no change)

● Two’s comp. → unsigned
– Overflow if value is negative (otherwise, no change)

0101 (5) → 0000 0101 (5)

1101 (-3) → 1111 1101 (-3)

0000 0101 (5) → 0101 (5)
0011 0101 (53) → 0101 (5)

0101 (5) → 0101 (5)
1101 (13) → 1101 (-3)

0101 (5) → 0101 (5)
1101 (-2) → 1101 (13)

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 28
	Slide 29

