

CS 261
Fall 2021

Mike Lam, Professor

Files

Files

● A file is a sequence of bytes
– Logical abstraction provided by the operating system
– In Linux, many things are represented as files

● All I/O is performed by reading/writing "files"

– Raw format on disk is determined by file system
● Common file systems: FAT32, NTFS, HFS+, ext4, Lustre

● Basic file operations:
– Open a file (returns a file descriptor integer identifier)
– Change current position (seek)
– Read and write bytes
– Close a file (kernel does this if the process does not)

Files

● Regular files – contain arbitrary data
– Binary vs. text file distinction (applications only)
– Context is crucial! (Info = Bits + Context)

● All files are “binary”!

● Directory files – contain links to other files
– Special links: "." (self) and ".." (parent)

● Socket files – links to another process
– Could be on another computer
– Used for inter-process communication (IPC)
– You'll learn to use these in CS 361

Files

● Pipes - link between two processes
– Persist as long as the processes are running
– Named pipes persist outside of any processes

● Symbolic (“soft”) links - contains a reference to another file
– A hard link (not a file!) is just a pointer to a shared inode

● Character/block devices - access to hardware
– Unbuffered (character) or buffered (block)
– Examples: hard disks, keyboard, printers, terminals

● Pseudo-devices - utilities provided by OS
– /dev/null - discards input; no output
– /dev/zero - outputs continuous stream of zero bytes

– /dev/random and /dev/urandom - outputs pseudo-random numbers

File systems

● File systems abstract the details of file storage
– Manage logical → hardware mapping
– Manage metadata (stored in inodes)

● File systems must be mounted
– One “root” file system (“/”); use mount to add others

– Mounted into a specific mount point in root file system
– Usually auto-mounted according to /etc/fstab

– Use df utility to view mounted file systems

– File system can be mounted from another machine
● Networked File System (NFS)

File system hierarchy

● File system hierarchy standard (FHS)
– Standard layout of files on a Linux system

● Absolute vs. relative pathnames
– Absolute: path from root (/)

– Relative: path from current working directory

Question

● What is the absolute pathname for the “sam”
folder?

/home/sam

Question

● Assume you are in the “anne” folder. What is
the relative pathname for the “sam” folder?

../sam

Question

● What is the absolute pathname for the “dot”
utility?

/usr/bin/dot

Question

● Assume you are in the “anne” folder. What is
the relative pathname for the “dot” utility?

../../usr/bin/dot

File metadata

● Metadata is information about a file
– Stored in an inode by the file system or kernel
– Use stat() or fstat() to obtain a file's metadata

– Need unistd.h and sys/stat.h
– Information:

● File type (regular, directory, socket)
● User and group owner IDs
● Access permissions
● Total size (in bytes or blocks)
● Date/time of last access/modification
● Device ID
● Pointers to file data on device (direct or indirect)

File permissions

● Traditional Unix permissions
– Three bits: read, write, execute

● Stored in inode; interpreted using octal

– Three categories: user, group, other
– Every file has a user owner and a group

● “Other” = everyone else (not owner or in group)

– See output of “ls -l” and “groups”

– Change permissions using chmod
● chmod u+x <file> (add execute permission for user)
● chmod go-w <file> (remove write permission for group/other)
● chmod a+r <file> (add read permission for everyone)
● chmod 644 <file> (set permissions to rw-r--r--)

-rw-r--r--
user group other

file type: - Regular file
b Block device
c Character device
d Directory
l Symbolic link
s Socket

Question

● Give the Unix permissions in octal of a file that
can be read, written, and executed by anyone
(not a fantastic idea from a security standpoint!).

777 -rwxrwxrwx

Question

● Give the Unix permissions in octal of a file that
can be read and executed by anyone but only
read, executed, and written by the owner (e.g., a
compiled program).

755 -rwxr-xr-x

Question

● Give the Unix permissions in octal of a file that
can be read only by the owner and not written
or executed by anyone (e.g., an SSH key file).

400 -r--------

File permissions

● Access Control Lists (ACLs)
– Newer mechanism (more complex but more flexible)
– Any desired permission at any desired granularity

● getfacl() / setfacl()

– Useful for fine-grained permissions
● Example: your PA submission folders for this class

– Interactions with traditional permissions can be tricky
● Effective permissions are the intersection of traditional and ACL

user:lam2mo:rwx // sample permissions for
user:weikleda:rwx // CS 261 submissions
user:<YOUR_EID>:rwx
group:csmajor:---
other::---

File sharing

● Open files can be shared among processes via OS
– Descriptor tables (per-process) - duplicated on fork
– Open file table (shared) - use lsof utility to view

– inode table (shared) - called “v-node” table in textbook

One entry per file
on disk (whether
open or not)

One entry per currently-open file
(possibly shared between processes)

One entry per
currently-open file
(unique to one
process)

Standard I/O

● Three C standard file descriptors for every process
– Standard input (stdin) (0)

– Standard output (stdout) (1)

– Standard error (stderr) (2)

– In Java: System.in, System.out, and System.err

● Used by default in some places
– printf("Hello!") means fprintf(stdout, "Hello!")

a.out stdoutstdin

stderr

File I/O functions

● Unix I/O functions
– open, read, write, lseek, stat, close

– Thin wrappers for system calls
– Uses integer file descriptors

● C standard I/O functions (libc)
– fopen, fread, fgets, fwrite, fprintf, fseek, fclose

– Provides buffering and line ending translation
– Uses FILE* file stream abstraction around file descriptors

– More portable!
● Textbook's robust I/O routines

– Wrappers for buffered terminal/socket I/O (no short counts)
– We won't use them in this course

File I/O functions

● General guidelines (from textbook)
– Use the standard I/O functions whenever possible
– Don’t use scanf to read binary files

– Use the robust I/O functions for network sockets

I/O redirection

● Linux shells allow you to redirect standard I/O streams
– Standard out: echo "Hello" > data.txt

● By default, prints to the console

– Standard in: wc < data.txt
● By default, reads from the keyboard
● Use CTRL-D to signal “end” of input

– Standard err: ./mybigapp 2> log.txt

– Out and err: ./mybigapp &> output.txt

– Pipes: ls */*.c | grep "p4"
● Can combine with redirection: ls */*.c | grep "p4" > p4-files.txt

ls grep p4-files.txt

← Useful for testing iotrap
in P4! (put the input in a file

and redirect it to stdin)

System design

● Unix system design philosophy:
– Write programs that do one thing and do it well
– Write programs to work together
– Write programs to handle text streams, because that is a

universal interface

curl https://www.gutenberg.org/files/100/100-0.txt |
tr -cs A-Za-z '\n' | tr A-Z a-z | sort | uniq -c |
sort -rn | sed 10q

Example:

Determine the ten most-frequently-used words in the
complete works of William Shakespeare.

Question

● How many processes will the following
command create?

curl https://www.gutenberg.org/files/100/100-0.txt |
tr -cs A-Za-z '\n' | tr A-Z a-z | sort | uniq -c |
sort -rn | sed 10q

OS Themes

● Information = Bits + Context
● Abstraction helps manage complexity
● Systems software is a foundation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

