

CS 261
Fall 2021

Mike Lam, Professor

Caching
(get it??)

Topics

● Caching
● Cache implementations
● Cache policies
● Cache performance
● Performance improvement strategies

Motivation

● Caching is ubiquitous in modern computing:
– L1-L3 memory
– TLB and virtual memory (next week)
– Disk controller buffers
– Network controller buffers
– Browser caches
– Content delivery networks

Caching

● A cache is a small, fast memory that acts as a
buffer or staging area for a larger, slower memory
– Fundamental CS system design concept
– Data is transferred in blocks or lines
– Slower caches use larger block sizes
– Cache hit vs. cache miss
– Hit ratio: # hits / # memory accesses

Cache implementations

● What data structure can we use to implement caches?
– Need FAST lookups and containment checks
– From CS 240: use a hash table!
– Cache slot = "real address" % CACHE_SIZE

Multiple addresses may map
to the same cache slot! (this
is called a conflict)

Here there are eight
slots, so the slot ID
is the last 3 bits of
the memory address
(23 = 8)

Question

● Suppose we have a sixteen-element cache, with slots
labeled starting at zero. Which slot would we use to store a
cached version of a data element stored at address 0x4d6?
– Reminder: cache slot = "real address" % CACHE_SIZE

– Hint: 2
4
 = 16, and four bits = one hex digit

Cache implementations

● A cache line is a block or sequence of bytes that is
moved between memory levels in a single operation

● A cache set is a collection of one or more cache lines
– Each cache line contains a tag to identify the source address

and a valid flag/bit indicating whether the value is up-to-date

Cache implementations

● General cache organization:
– S = # of cache sets = 2

s

● s = # of bits for set index

– E = # of lines per cache set
● Level of associativity

– B = block (cache line) size = 2
b

● Essentially bytes per line
● b = # of bits for block offset

– m = # of bits for memory address
● M = size of memory in bytes = 2

m

– C = total cache capacity = S x E x B
● sets x lines/set x bytes/line

– t = # of tag bits = m - s - b

Types of caches

● Direct-mapped (E = 1)
– One line per set

● Set-associative (1 < E < C/B)
– Multiple lines per set

● Fully-associative (E = C/B)
– All lines in one set

Here E = 2

Cache implementations

● Direct-mapped (E = 1) caches

Question

● Suppose we have a direct-mapped cache (S=16, B=1), with
sets labeled starting at zero. Which set would we use to store
a cached version of a data element stored at address 0x4d6?
– Hint: S=16 so the number of bits for the set index is four
– Hint: B=1 so the number of bits for the block offset is zero

Cache implementations

● Set-associative (1 < E < C/B) caches

“Two-way set associative”

Question

● Suppose we have a four-way set-associative cache (S=16, E=4,
B=1), with sets labeled starting at zero. Which set would we use to
store a cached version of a data element stored at address 0x4d6?

Cache implementations

● Fully-associative (E = C/B) caches

Question

● Suppose we have a fully-associative cache (B=1) with sets
labeled starting at zero. Which set would we use to store a
cached version of a data element stored at address 0x4d6?

Cache implementations

● In general, we use the middle bits for the set index
– Contiguous memory blocks should map to different cache sets

Cache misses (“Three C’s”)

● Compulsory / cold miss
– First cache miss due to an “empty” cache
– As the cache loads data, it is warmed up

● Conflict miss
– Cache miss due to multiple lines in working set mapping to

the same cache line
– Repeated conflict misses for the same cache lines or blocks

is called thrashing
● Capacity miss

– The working set (amount of memory accessed in a given time
interval) is too large to fit in cache

Cache policies

● If a cache set is full, a cache miss in that set
requires lines to be replaced or evicted

● Policies:
– Random replacement
– Least recently used
– Least frequently used

● These policies require additional overhead
– More important for lower levels of the memory hierarchy

Cache policies

● How should we handle writes to a cached value?
– Write-through: immediately update to lower level

● Typically used for higher levels of memory hierarchy

– Write-back: defer update until replacement/eviction
● Typically used for lower levels of memory hierarchy

● How should we handle write misses?
– Write-allocate: load then update

● Typically used for write-back caches

– No-write-allocate: update without loading
● Typically used for write-through caches

Performance impact

● Metrics
– Hit rate/ratio: # hits / # memory accesses (1 – miss rate)

● Hit time: delay in accessing data for a cache hit

– Miss rate/ratio: # misses / # memory accesses
● Miss penalty: delay in loading data for a cache miss

– Read throughput (or "bandwidth"): the rate that a program
reads data from a memory system

● General observations:
– Larger cache = higher hit rate but higher hit time
– Lower miss rates = higher read throughput

Case study: matrix multiply

Case study: matrix multiply

Lower is
better

Optimization strategies

● Focus on the common cases
● Focus on the code regions that dominate runtime
● Focus on inner loops and minimize cache misses
● Favor repeated local accesses (temporal locality)
● Favor stride-1 access patterns (spatial locality)

Tip: You can use Valgrind to detect cache
misses (look up a tool called cachegrind)

Core theme

● Cache system design involves tradeoffs
– Larger caches => higher hit rate but higher hit time

● Size vs. speed

– Larger blocks => higher hit rate for programs with good
spatial locality, but lower hit rate for others

● Favor spatial vs. temporal locality

– Higher associativity => lower chance of thrashing but
expensive to implement w/ possibly increased hit time

● Hit time vs. miss penalty

– More writes => simpler to implement but lower performance
● Write-through vs. write-back

Next time

● Virtual memory: an OS-level memory cache
– Bridge between module 4 (machine architectures)

and module 5 (operating systems)

Cache architecture

● Example: Intel Core i7
● Per-core:

– Registers
– L1 d-cache and i-cache

● Data and instructions

– L2 unified cache
● Shared:

– L3 unified cache
– Main memory

Question

● As the working set size of a loop decreases,
what generally happens to the read throughput?
– A) It increases
– B) It decreases
– C) It remains the same
– D) There is no correlation
– E) Not enough information to determine

Temporal locality

● Working set size vs. throughput

Higher is
better

Question

● As the stride of a loop increases, what
generally happens to the read throughput?
– A) It increases
– B) It decreases
– C) It remains the same
– D) There is no correlation
– E) Not enough information to determine

Spatial locality

● Stride vs. throughput

Higher is
better

Memory mountain (CS:APP)

● Stride and WSS vs. read throughput

Higher is
better

Memory mountain (stu, 2017)

Output of lscpu:

Architecture: x86_64
Byte Order: Little Endian
CPU(s): 24
Thread(s) per core: 2
Core(s) per socket: 6
Socket(s): 2
Vendor ID: Intel
Model name:
Intel(R) Xeon(R) CPU E5-2640
CPU max MHz: 3000.0000
CPU min MHz: 1200.0000
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 15360K

Memory mountain (stu, 2018)

Output of lscpu:

Architecture: x86_64
Byte Order: Little Endian
CPU(s): 48
Thread(s) per core: 2
Core(s) per socket: 12
Socket(s): 2
Vendor ID: Intel
Model name:
Intel(R) Xeon(R) CPU E5-2680
CPU max MHz: 3300.0000
CPU min MHz: 1200.0000
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 30720K

Memory mountain (stu, 2021)

Output of lscpu:

Architecture: x86_64
Byte Order: Little Endian
CPU(s): 48
Thread(s) per core: 2
Core(s) per socket: 12
Socket(s): 2
Vendor ID: Intel
Model name:
Intel(R) Xeon(R) CPU E5-2680 v3
CPU max MHz: 3300.0000
CPU min MHz: 1200.0000
L1d cache: 768K
L1i cache: 768K
L2 cache: 6M
L3 cache: 60M

Note: new per-user resource limits put
in place Fall 2021 may be interfering

Question

● Assume the following cache:
– S = 8 sets (so s=3 bits for set index)
– E = 1 line per set (so direct-mapped)
– B = 4 bytes per line (so b=2 bits for block offset)

● What is the set index, tag, and block offset for
address 227?
– Hint: 227 in binary is 11100011

Question

● Assume the following cache:
– S = 8 sets (so s=3 bits for set index)
– E = 1 line per set (so direct-mapped)
– B = 4 bytes per line (so b=2 bits for block offset)

● Address 227 (binary: 11100011)

– Set index = 000
2
 (0)

– Tag = 111
2
 (7)

– Block offset = 11
2
 (3)

– Is this a hit?
No! Need to load the line into cache:

Question

● Assume the following cache:
– S = 8 sets (so s=3 bits for set index)
– E = 1 line per set (so direct-mapped)
– B = 4 bytes per line (so b=2 bits for block offset)

● What is the set index, tag, and block offset for
address 226? Is it a hit?
– Hint: 226 in binary is 11100010

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

