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Topics

● Caching
● Cache implementations
● Cache policies
● Cache performance
● Performance improvement strategies



  

Motivation

● Caching is ubiquitous in modern computing:
– L1-L3 memory
– TLB and virtual memory (next week)
– Disk controller buffers
– Network controller buffers
– Browser caches
– Content delivery networks



  

Caching

● A cache is a small, fast memory that acts as a 
buffer or staging area for a larger, slower memory
– Fundamental CS system design concept
– Data is transferred in blocks or lines
– Slower caches use larger block sizes
– Cache hit vs. cache miss
– Hit ratio: # hits / # memory accesses



  

Cache implementations

● What data structure can we use to implement caches?
– Need FAST lookups and containment checks
– From CS 240: use a hash table!
– Cache slot = "real address" % CACHE_SIZE

Multiple addresses may map 
to the same cache slot! (this 
is called a conflict)

Here there are eight 
slots, so the slot ID 
is the last 3 bits of 
the memory address 
(23 = 8)



  

Question

● Suppose we have a sixteen-element cache, with slots 
labeled starting at zero. Which slot would we use to store a 
cached version of a data element stored at address 0x4d6?
– Reminder: cache slot = "real address" % CACHE_SIZE

– Hint: 2
4
 = 16, and four bits = one hex digit



  

Cache implementations

● A cache line is a block or sequence of bytes that is 
moved between memory levels in a single operation

● A cache set is a collection of one or more cache lines
– Each cache line contains a tag to identify the source address 

and a valid flag/bit indicating whether the value is up-to-date



  

Cache implementations

● General cache organization:
– S = # of cache sets = 2

s

● s = # of bits for set index

– E = # of lines per cache set
● Level of associativity

– B = block (cache line) size = 2
b

● Essentially bytes per line
● b = # of bits for block offset

– m = # of bits for memory address
● M = size of memory in bytes = 2

m

– C = total cache capacity = S x E x B
● sets x lines/set x bytes/line

– t = # of tag bits = m - s - b



  

Types of caches

● Direct-mapped (E = 1)
– One line per set

● Set-associative (1 < E < C/B)
– Multiple lines per set

● Fully-associative (E = C/B)
– All lines in one set

Here E = 2



  

Cache implementations

● Direct-mapped (E = 1) caches



  

Question

● Suppose we have a direct-mapped cache (S=16, B=1), with 
sets labeled starting at zero. Which set would we use to store 
a cached version of a data element stored at address 0x4d6?
– Hint: S=16 so the number of bits for the set index is four
– Hint: B=1 so the number of bits for the block offset is zero



  

Cache implementations

● Set-associative (1 < E < C/B) caches

“Two-way set associative”



  

Question

● Suppose we have a four-way set-associative cache (S=16, E=4, 
B=1), with sets labeled starting at zero. Which set would we use to 
store a cached version of a data element stored at address 0x4d6?



  

Cache implementations

● Fully-associative (E = C/B) caches



  

Question

● Suppose we have a fully-associative cache (B=1) with sets 
labeled starting at zero. Which set would we use to store a 
cached version of a data element stored at address 0x4d6?



  

Cache implementations

● In general, we use the middle bits for the set index
– Contiguous memory blocks should map to different cache sets



  

Cache misses (“Three C’s”)

● Compulsory / cold miss
– First cache miss due to an “empty” cache
– As the cache loads data, it is warmed up

● Conflict miss
– Cache miss due to multiple lines in working set mapping to 

the same cache line
– Repeated conflict misses for the same cache lines or blocks 

is called thrashing
● Capacity miss

– The working set (amount of memory accessed in a given time 
interval) is too large to fit in cache



  

Cache policies

● If a cache set is full, a cache miss in that set 
requires lines to be replaced or evicted

● Policies:
– Random replacement
– Least recently used
– Least frequently used

● These policies require additional overhead
– More important for lower levels of the memory hierarchy



  

Cache policies

● How should we handle writes to a cached value?
– Write-through: immediately update to lower level

● Typically used for higher levels of memory hierarchy

– Write-back: defer update until replacement/eviction
● Typically used for lower levels of memory hierarchy

● How should we handle write misses?
– Write-allocate: load then update

● Typically used for write-back caches

– No-write-allocate: update without loading
● Typically used for write-through caches



  

Performance impact

● Metrics
– Hit rate/ratio: # hits / # memory accesses (1 – miss rate)

● Hit time: delay in accessing data for a cache hit

– Miss rate/ratio: # misses / # memory accesses
● Miss penalty: delay in loading data for a cache miss

– Read throughput (or "bandwidth"): the rate that a program 
reads data from a memory system

● General observations:
– Larger cache = higher hit rate but higher hit time
– Lower miss rates = higher read throughput



  

Case study: matrix multiply



  

Case study: matrix multiply

Lower is 
better



  

Optimization strategies

● Focus on the common cases
● Focus on the code regions that dominate runtime
● Focus on inner loops and minimize cache misses
● Favor repeated local accesses (temporal locality)
● Favor stride-1 access patterns (spatial locality)

Tip: You can use Valgrind to detect cache 
misses (look up a tool called cachegrind)



  

Core theme

● Cache system design involves tradeoffs
– Larger caches => higher hit rate but higher hit time

● Size vs. speed

– Larger blocks => higher hit rate for programs with good 
spatial locality, but lower hit rate for others

● Favor spatial vs. temporal locality

– Higher associativity => lower chance of thrashing but 
expensive to implement w/ possibly increased hit time

● Hit time vs. miss penalty

– More writes => simpler to implement but lower performance
● Write-through vs. write-back



  

Next time

● Virtual memory: an OS-level memory cache
– Bridge between module 4 (machine architectures) 

and module 5 (operating systems)



  

Cache architecture

● Example: Intel Core i7
● Per-core:

– Registers
– L1 d-cache and i-cache

● Data and instructions

– L2 unified cache
● Shared:

– L3 unified cache
– Main memory



  

Question

● As the working set size of a loop decreases, 
what generally happens to the read throughput?
– A) It increases
– B) It decreases
– C) It remains the same
– D) There is no correlation
– E) Not enough information to determine



  

Temporal locality

● Working set size vs. throughput

Higher is 
better



  

Question

● As the stride of a loop increases, what 
generally happens to the read throughput?
– A) It increases
– B) It decreases
– C) It remains the same
– D) There is no correlation
– E) Not enough information to determine



  

Spatial locality

● Stride vs. throughput

Higher is 
better



  

Memory mountain (CS:APP)

● Stride and WSS vs. read throughput

Higher is 
better



  

Memory mountain (stu, 2017)

Output of lscpu:

Architecture:          x86_64
Byte Order:            Little Endian
CPU(s):                24
Thread(s) per core:    2
Core(s) per socket:    6
Socket(s):             2
Vendor ID:             Intel
Model name:
Intel(R) Xeon(R) CPU E5-2640
CPU max MHz:           3000.0000
CPU min MHz:           1200.0000
L1d cache:             32K
L1i cache:             32K
L2 cache:              256K
L3 cache:              15360K



  

Memory mountain (stu, 2018)

Output of lscpu:

Architecture:          x86_64
Byte Order:            Little Endian
CPU(s):                48
Thread(s) per core:    2
Core(s) per socket:    12
Socket(s):             2
Vendor ID:             Intel
Model name:          
Intel(R) Xeon(R) CPU E5-2680
CPU max MHz:           3300.0000
CPU min MHz:           1200.0000
L1d cache:             32K
L1i cache:             32K
L2 cache:              256K
L3 cache:              30720K



  

Memory mountain (stu, 2021)

Output of lscpu:

Architecture:          x86_64
Byte Order:            Little Endian
CPU(s):                48
Thread(s) per core:    2
Core(s) per socket:    12
Socket(s):             2
Vendor ID:             Intel
Model name:          
Intel(R) Xeon(R) CPU E5-2680 v3
CPU max MHz:           3300.0000
CPU min MHz:           1200.0000
L1d cache:             768K
L1i cache:             768K
L2 cache:              6M
L3 cache:              60M

Note: new per-user resource limits put 
in place Fall 2021 may be interfering



  

Question

● Assume the following cache:
– S = 8 sets (so s=3 bits for set index)
– E = 1 line per set (so direct-mapped)
– B = 4 bytes per line (so b=2 bits for block offset)

● What is the set index, tag, and block offset for 
address 227?
– Hint: 227 in binary is 11100011



  

Question

● Assume the following cache:
– S = 8 sets (so s=3 bits for set index)
– E = 1 line per set (so direct-mapped)
– B = 4 bytes per line (so b=2 bits for block offset)

● Address 227 (binary: 11100011)

– Set index = 000
2
 (0)

– Tag = 111
2
 (7)

– Block offset = 11
2
 (3)

– Is this a hit?
No! Need to load the line into cache:



  

Question

● Assume the following cache:
– S = 8 sets (so s=3 bits for set index)
– E = 1 line per set (so direct-mapped)
– B = 4 bytes per line (so b=2 bits for block offset)

● What is the set index, tag, and block offset for 
address 226? Is it a hit?
– Hint: 226 in binary is 11100010
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