

CS 261
Fall 2021

Mike Lam, Professor

CPU Architecture

Topics

● CPU stages and design
● Pipelining

CPU overview

● A CPU consists of
– Combinational circuits for computation
– Sequential circuits for memory
– Wires/buses for connectivity and intermediate results
– A clocked register PC for synchronization

Example

%rdx = 0x200 %rdx = 0x200

Example

%rdx = 0x200 %rdx = 0x200

CPU design

● SEQ: sequential Y86 CPU
– Runs one instruction at a time
– ysim: simulator

● Components:
– Clocked register (PC)
– Hardware units (blue boxes)

● Combinational/sequential circuits
● ALU, register file, memory

– Control logic (grey rectangles)
● Combinational circuits
● Details in textbook

– Wires (white circles)
● Word (thick lines)
● Byte (thin lines)
● Bit (dotted lines)

System design

● CPU measurement
– Throughput: instructions executed per second

● GIPS: billions of (“giga-”) instructions per second
● 1 GIPS → each instruction takes 1 nanosecond (a billionth of a second)

– Latency / delay: time required per instruction
● Picosecond: 10-12 seconds Nanosecond: 10-9 seconds
● 1,000 ps = 1 nanosecond

– Relationship: throughput = # instructions / latency
● Example: 1 / 320ps * (1000ps/ns) = 0.003125 * 1000 ≈ 3.1 GIPS

System design

● Current CPU design is serial
– One instruction executes at a time
– Only way to improve is to run faster!
– Limited by speed of light / electricity

● One approach: make it smaller
– Shorter circuit = faster circuit
– Limited by manufacturing technology

What else could we do?

System design

?

● Idea: pipelined design
– Multiple instructions execute simultaneously (“instruction-level parallelism”)
– Similar to cafeteria line or car wash
– Split logic into stages and connect stages with clocked registers

System design

● Idea: pipelined design
– Multiple instructions execute simultaneously (“instruction-level parallelism”)
– Similar to cafeteria line or car wash
– Split logic into stages and connect stages with clocked registers
– System design tradeoff: throughput vs. latency

Y86 pipelining

● It's complicated!
– Split up the stages

and add more
clocked registers for
intermediate results

Pipelining

● Limitation: non-uniform partitioning
– Logic segments may have significantly different lengths

Pipelining

Data dependency:

irmovq $8, %rax

addq %rax, %rbx

mrmovq 0x300(%rbx), %rdx

Control dependency:

loop:

subq %rdx, %rbx

jne loop

 irmovq $10, %rdx

● Limitation: dependencies
– The effect of one instruction depends on the result of another
– Both data and control dependencies
– Sometimes referred to as hazards

Pipelining

● Approaches to avoiding hazards
– Halt execution (or throw an exception)
– Stalling: “hold back” an instruction temporarily
– Data forwarding: allow latter stages to feed into earlier stages,

bypassing memory or registers
● (for data dependencies)

– Branch prediction: guess address of next instruction
● (for control dependencies)

– For more info, read CS:APP section 4.5

Conditional moves

● Similar to conditional jumps, but they move data if
certain condition codes are set
– Benefit: no branch prediction penalty

● Improved performance in the presence of pipelining

 subq %rbx, %rax
 jle skip
 rrmovq %rdx, %rcx
skip:

 subq %rbx, %rax
 cmovg %rdx, %rcx

Data (CCs) and control
dependencies

No control dependency
(only data)

if (a > b) c = d;

Amdahl's Law

T
s
 = serial time

T
P
 = parallel time

S = speedup =

p = # of parallel stages

T S

T P

r = % of logic not amenable to pipelining

S = speedup =
T S

(1−r)T S

p
+ r T S

T
P
 =

(1−r)T S

p
+ r T S

should
increase

as p grows

Amdahl's Law: S ≤ as p increases
1
r

Amdahl's Law

r = % of logic not
amenable to pipelining

S = speedup =
T S

(1−r)T S

p
+ r T S

Amdahl's Law:

S ≤ as p increases1
r

p = # of parallel stages

r = 10% → speedup limited to 10x

r = 5% → speedup limited to 20x

r = 25% → speedup limited to 4x

r = 50% → speedup limited to 2x

Speedup limited inversely
proportionally by serial %

Number of stages

https://en.wikipedia.org/wiki/Amdahl's_law#/media/File:AmdahlsLaw.svg

Summary

● We’ve now learned how a CPU is constructed
– Transistors → logic gates → circuits → CPU
– Pipelining provides instruction-level parallelism

● Although there are some limitations

● This is not a CPU architecture class
– We won’t be closely studying the specifics of SEQ
– If you’re interested, the details are in section 4.3
– Same for PIPE (the pipelined version), in section 4.5
– If you’re REALLY interested, plan to take CS 456

CS 456: Architecture

● Course objectives:
– Summarize the construction of a pipelined processor from low-level building blocks
– Describe and categorize hardware techniques for parallel implementation at the

instruction, data, and thread levels
– Summarize storage and I/O interfacing techniques
– Apply address decoding and memory hierarchy strategies
– Evaluate the performance impact of various hardware designs, including caches
– Describe how hardware implementations can improve overall system performance
– Justify the use of hardware-based optimizations that fail occasionally
– Compare and contrast the actual execution of code with software designs
– Analyze how a person’s logical flow of thinking (sequential) differs from the processor

implementation
– Demonstrate the ability to communicate hardware and software design trade-offs to both

professional colleagues and laypeople

Lessons learned

● Computers are not human; they’re complex machines
– Machines require extremely precise inputs
– Machine output can be difficult to interpret

● Abstraction helps to manage complexity
– Use simpler components to build more complex ones

● System design involves tradeoffs
– Simpler ISA vs. ease of coding
– Throughput vs. latency

● The details matter (A LOT!)
– There are many ways to fail
– Skill and dedication are required to succeed

Next up

● Y86 architecture and semantics
● Memory architecture and caching
● Final module: operating systems

Lab Diagram
Sequential CPU:

Fch Dec Exe Mem WB

Clock

Fch Dec Exe WB

Clock

Mem

mrmovq (%rdi), %rbx Fch-Dec-Exe-Mem-WB

addq %rbx, %rax Fch-Dec-Exe-Mem-WB

addq %rcx, %rdi Fch-Dec-Exe-Mem-WB

subq %rdx, %rsi Fch-Dec-Exe-Mem-WB

jne loop Fch-Dec-Exe-Mem-WB

Pipelined CPU:

mrmovq (%rdi), %rbx Fch Dec

addq %rbx, %rax Fch

addq %rcx, %rdi

subq %rdx, %rsi

jne loop

(UNFINISHED - #3 on lab)

Time →

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

