

CS 261
Fall 2021

Mike Lam, Professor

x86-64 Data Movement and Arithmetic

Topics

● Data movement
● Instruction validity
● Stack operations
● Arithmetic and logical operations

von Neumann architecture

CPUALU

Register
File

Main Memory

PC

1. Fetch

2. Decode

3. Execute

(repeat)

Data movement

● Primary data movement instruction: "mov"
– Copies data from first operand to second operand

● There are no “types” in assembly code
– You must know how many bytes you want to move

● Information = Bits + Context

– Often, a “class” of machine instructions (e.g., “mov__”) will perform
similar operations on different sizes of data

● Historical artifact: "word" in x86 is 16 bits
– 1 byte (8 bits) = "byte" (b suffix)

– 2 bytes (16 bits) = "word" (w suffix)

– 4 bytes (32 bits) = "double/long word" (l suffix)

– 8 bytes (64 bits) = "quad word" (q suffix)

Data movement

● Primary data movement instruction: "mov"
– Copies data from first operand to second operand
– Multiple suffixes:

● movb, movw, movl, movq, movabsq
● movabsq is the only form that takes a 64-bit immediate

● Zero-extension variant: "movz"
– movzbw, movzbl, movzwl, movzbq, movzwq

– Note lack of movzlq; just use movl, which sets higher 32-bits to zero

● Sign-extension variant: "movs"
– movsbw, movsbl, movswl, movsbq, movswq, movslq

byte-to-word

Registers
● Multiple names per register

– Refers to different data sizes
– eXX = lower 32-bits (e.g., eax)
– rXX = full 64 bits (e.g., rax)

● Instruction suffixes and
operand sizes must match!
– E.g., movq $1, %rax is valid

but movq $1, %eax is not

Memory addressing modes

● Absolute: addr
– Effective address: addr

● Indirect: (reg)
– Effective address: R[reg]

● Base + displacement: offset(reg)
– Effective address: offset + R[reg]

● Indexed: offset(regbase, regindex)
– Effective address: offset + R[reg

base
] + R[reg

index
]

● Scaled indexed: offset(regbase, regindex, s)

– Effective address: offset + R[reg
base

] + R[reg
index

] ∙ s

– Scale (s) must be 1, 2, 4, or 8

R[reg] = value of register reg

useful for
pointers!

useful for
arrays!

(also, note that
offset and reg

base

are optional here)

Memory operands

● Addresses in x86-64 are always 32 or 64 bits
– Thus, the registers used to calculate the effective address of a

memory operand must be 32 or 64 bits
● E.g., movw %ax, (%ebp) is valid

● E.g., movw %ax, (%rbp) is valid

● E.g., movw %ax, (%bp) is not valid!

● E.g., movw %ax, %rbp is not valid!

● The size of data moved is determined by the size of the register
operand or the instruction suffix
– NOT the size of the register(s) used to calculate the effective address
– Memory locations have no “type” in assembly/machine code

Validity summary

● Is an instruction valid?
– Is the opcode valid?
– Are all of the operands valid?

● For immediate operands, is it a source register?
– (cannot write to immediates!)

● For register operands, is it a valid register?
– (and does it match the width suffix?)

● For memory operands, is it a valid addressing mode?
– (and are all registers used 32- or 64-bits?)

Question

● Which of the following are valid x86-64
movement instructions?
– A) movb %eax, %ecx

– B) movl %eax, %ecx

– C) movl $8, %edx

– D) movl $8, %rdx

– E) movw $0x24, 0x4(%rsp)

– F) movl $0x24, 0x4(%esp)

Aside: suffixes

● Is the operand size suffix mandatory?
– E.g., the "l" or "q" in "movl" or "movq"

● Technically, it is only required if it cannot be inferred
– E.g., mov %eax, %edi is not ambiguous

● We can infer that this is a 32-bit move because of the
destination

– However, mov $2, (%rdx) is ambiguous
● Is it a 8-bit move? 32 bits? 64 bits?
● A suffix is required here (e.g., movl $2, (%rdx) for 32 bits)

– Generally, it is safer always to include the suffix

Question

● T/F: "movl (%rax), (%rdx)" is a valid x86-64
assembly instruction.

Aside: memory operands

● In x86-64, most opcodes have no memory -> memory form
– You can't encode two memory operands in the same instruction
– Invalid: movl (%rax), (%rdx)

● Solution: use a temporary register
movl (%rax), %ecx

movl %ecx, (%rdx)

Stack operations

● The system stack holds 8-byte (quadword) slots, growing
downward from high addresses to low addresses
– Stack Pointer (SP) register stores address of "top" of stack

● i.e., a pointer to the last value pushed (lowest address)
● On x86-64, it is %rsp b/c addresses are 64 bits

– pushq <reg> instruction
● Subtract 8 from stack pointer
● Store value of <reg> at (%rsp)

– popq <reg> instruction
● Retrieve value at (%rsp)

– Save value in the given register
● Increment stack pointer by 8

0

static code

static data

heap

stack

400000

601000

(randomized)

≈ 7fff00000000

(randomized)

≈ 1000000

SP

Exercise

● Given the following register state, what will the values of the
registers be after the following instruction sequence?
– pushq %rax

– pushq %rcx

– pushq %rbx

– pushq %rdx

– popq %rax

– popq %rbx

– popq %rcx

– popq %rdx

 Registers
Name Value
%rax 0xAA
%rbx 0xBB
%rcx 0xCC
%rdx 0xDD

Exercise

● Given the following register state, what will the values of the
registers be after the following instruction sequence?
– pushq %rax

– pushq %rcx

– pushq %rbx

– pushq %rdx

– popq %rax %rax = 0xDD

– popq %rbx %rbx = 0xBB

– popq %rcx %rcx = 0xCC

– popq %rdx %rdx = 0xAA

 Registers
Name Value
%rax 0xAA
%rbx 0xBB
%rcx 0xCC
%rdx 0xDD

Arithmetic and logic operations

Exercise

 Registers
Name Value
%rax 0x12
%rbx 0x56
%rcx 0x02
%rdx 0xF0

What are the values of the
destination registers after each of the
following instructions executes in
sequence?

addq %rax, %rax
subq %rax, %rbx
imulq %rcx, %rax
andq %rbx, %rdx
shrq $4, %rdx

Exercise

 Registers
Name Value
%rax 0x12
%rbx 0x56
%rcx 0x02
%rdx 0xF0

What are the values of the
destination registers after each of the
following instructions executes in
sequence?

addq %rax, %rax
subq %rax, %rbx
imulq %rcx, %rax
andq %rbx, %rdx
shrq $4, %rdx

%rax:0x24
%rbx:0x32
%rax:0x48
%rdx:0x30
%rdx:0x03

%rax = 0x48
%rbx = 0x32
%rcx = 0x02
%rdx = 0x03

Exercise

What does the following instruction do
if %rax = 0x100?

leaq (%rax, %rax, 2), %rax

%rax = 0x300
(multiply by three)

Note: leaq does not actually
read/write memory!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23

