

CS 261
Fall 2021

Mike Lam, Professor

0000000100000f50 55 48 89 e5 48 83 ec 10 48 8d 3d 3b 00 00 00 c7
0000000100000f60 45 fc 00 00 00 00 b0 00 e8 0d 00 00 00 31 c9 89
0000000100000f70 45 f8 89 c8 48 83 c4 10 5d c3

_main:
0000000100000f50 pushq %rbp
0000000100000f51 movq %rsp, %rbp
0000000100000f54 subq $0x10, %rsp
0000000100000f58 leaq 0x3b(%rip), %rdi
0000000100000f5f movl $0x0, -0x4(%rbp)
0000000100000f66 movb $0x0, %al
0000000100000f68 callq 0x100000f7a
0000000100000f6d xorl %ecx, %ecx
0000000100000f6f movl %eax, -0x8(%rbp)
0000000100000f72 movl %ecx, %eax
0000000100000f74 addq $0x10, %rsp
0000000100000f78 popq %rbp
0000000100000f79 retq

Machine and Assembly Code
x86-64 Introduction

Topics

● Architecture/assembly intro
● Operands
● Basic opcodes

Computer systems

Let's focus for now on the
single-CPU components

von Neumann architecture

CPUALU

Register
File

Main Memory

PC

1. Fetch

2. Decode

3. Execute

(repeat)

Machine code

● Machine code instruction
– Variable-length binary encoding of opcodes and operands
– Program (instructions) stored in memory along with data
– Specific to a particular CPU architecture (e.g., x86-64)
– Looks very different than the original C code!

int add (int num1, int num2)
{
 return num1 + num2;
}

0000000000400606 <add>:
 400606: 55
 400607: 48 89 e5
 40060a: 89 7d fc
 40060d: 89 75 f8
 400610: 8b 55 fc
 400613: 8b 45 f8
 400616: 01 d0
 400618: 5d
 400619: c3

Machine code

● Instructions are specified by an instruction set architecture (ISA)
– x86-64 (x64) is the current dominant workstation/server architecture

● Enormous and complex; lots of legacy features and support for previous ISAs
● We’ll learn a bit of it now, then later focus on a simplified form called Y86

– ARM is used in embedded and mobile markets
– POWER is used in the high-performance market (supercomputers!)
– RISC-V is used in CPU research (and is growing in the industrial market)

0000000000400606 <add>:
 400606: 55
 400607: 48 89 e5
 40060a: 89 7d fc
 40060d: 89 75 f8
 400610: 8b 55 fc
 400613: 8b 45 f8
 400616: 01 d0
 400618: 5d
 400619: c3

Assembly code

● Assembly code: human-readable form of machine code
– Each indented line of text represents a single machine code instruction

● Two main x86-64 formats: Intel and AT&T (we'll use the latter)
● Use "#" to denote comments (extends to end of line)

– Generated from C code by compiler (not a simple process!)
– Disassemblers like objdump can extract assembly from an executable

– Understanding assembly helps you to debug, optimize, and secure
your programs

0000000000400606 <add>:
 400606: 55 push %rbp
 400607: 48 89 e5 mov %rsp,%rbp
 40060a: 89 7d fc mov %edi,-0x4(%rbp)
 40060d: 89 75 f8 mov %esi,-0x8(%rbp)
 400610: 8b 55 fc mov -0x4(%rbp),%edx
 400613: 8b 45 f8 mov -0x8(%rbp),%eax
 400616: 01 d0 add %edx,%eax
 400618: 5d pop %rbp
 400619: c3 retq

Assembly code

● Assembly provides low-level access to machine
– Program counter (PC) tracks current instruction

● Like a bookmark; also referred to as the instruction pointer (IP)

– Arithmetic logic unit (ALU) executes opcode of instructions
● Today, we'll focus on some very basic opcodes

– Register file & main memory store operands
● Registers are faster but main memory is larger

0000000000400606 <add>:
 400606: 55 push %rbp
 400607: 48 89 e5 mov %rsp,%rbp
 40060a: 89 7d fc mov %edi,-0x4(%rbp)
 40060d: 89 75 f8 mov %esi,-0x8(%rbp)
 400610: 8b 55 fc mov -0x4(%rbp),%edx
 400613: 8b 45 f8 mov -0x8(%rbp),%eax
 400616: 01 d0 add %edx,%eax
 400618: 5d pop %rbp
 400619: c3 retq

opcode operands

CPU
ALU

Register
File

Main Memory

PC

Operand types

● Immediate
– Operand value embedded in instruction itself
– Extends the size of the instruction by the width of the value
– Written in assembly using “$” prefix (e.g., $42 or $0x1234)

● Register
– Operand stored in register file
– Accessed by register number
– Written in assembly using name and “%” prefix (e.g., %eax or %rsp)

● Memory
– Operand stored in main memory
– Accessed by effective address calculated from instruction components
– Written in assembly using a variety of addressing modes

Registers
● General-purpose

– %rax, %rbx, %rcx, and %rdx
– %rsi and %rdi
– Legacy name meanings (e.g., “%rax” as

the accumulator) are less important for us
● But for now, note that %rax is also used to

store the return value of a function

● Special
– %rip: instruction pointer

● This is the PC on x86-64

– %flags: status info
● "Condition codes" in CS:APP

– %rbp: base pointer
– %rsp: stack pointer

(contents of %rax)%rax

(contents of %rbx)%rbx

(contents of %rcx)%rcx

(contents of %rdx)%rdx

(contents of %rsi)%rsi

(contents of %rdi)%rdi

(contents of %rip)%rip

(contents of %rflags)%rflags

...

...

Register File

Memory addressing modes

● Absolute: addr
– Effective address: addr

● Indirect: (reg)
– Effective address: R[reg]

● Base + displacement: offset(reg)
– Effective address: offset + R[reg]

● Indexed: offset(regbase, regindex)
– Effective address: offset + R[reg

base
] + R[reg

index
]

● Scaled indexed: offset(regbase, regindex, s)

– Effective address: offset + R[reg
base

] + R[reg
index

] ∙ s

– Scale (s) must be 1, 2, 4, or 8

R[reg] = value of register reg

useful for
pointers!

useful for
arrays!

(also, note that
offset and reg

base

are optional here)

Exercise

● Given the following machine status, what is the value of the
following assembly operands? (assume 32-bit memory locations)

– $42

– $0x10

– %rax

– 0x104

– (%rax)

– 4(%rax)

– 2(%rax, %rdx)

– (%rax, %rdx, 4)

 Memory
Address Value
0x100 0xFF
0x104 0xAB
0x108 0x13

 Registers
Name Value
%rax 0x100
%rdx 0x2

Exercise

● Given the following machine status, what is the value of the
following assembly operands? (assume 32-bit memory locations)

– $42

– $0x10

– %rax

– 0x104

– (%rax)

– 4(%rax)

– 2(%rax, %rdx)

– (%rax, %rdx, 4)

 Memory
Address Value
0x100 0xFF
0x104 0xAB
0x108 0x13

 Registers
Name Value
%rax 0x100
%rdx 0x2

● Given the following machine status, what is the value of the
following assembly operands? (assume 32-bit memory locations)

– 42

– 16

– 0x100

– 0xAB

– 0xFF

– 0xAB

– 0xAB

– 0x13

Question

● In x86-64, assume the %rax register stores the
address of the data you want to access. Which
of the following operand specifiers could NOT
be used to access the data?
– A) %rax

– B) (%rax)

– C) 0(%rax)

– D) (,%rax,1)

– E) 0(,%rax,1)

Basic x86-64 instructions

● Data movement: "mov"
– Copies data from first operand to second operand

● E.g., mov $1, %rax will set the value of %rax to 1

● Arithmetic: "add", "sub", "imul"
– Performs operation, saving result in second operand

● E.g., add %rcx, %rax will add the value of %rcx to the value of %rax
● (Note lack of division)

● Bitwise: "and", "or", "xor"
– Performs operation, saving result in second operand

● E.g., xor %rcx, %rax will XOR the values of %rcx and %rax, saving the
result in %rax

Basic x86-64 instructions

● Control flow: change the PC with jmp (%rip cannot be set directly)

– Label (name followed by “:”) marks a location in code that can be “jumped to”
● E.g., “foo:”

– jmp: Jump to a given label
● E.g., jmp foo will “jump to” label “foo”

● Conditionals: "cmp" followed immediately by "je" or "jne"
– cmp: Compares operand values
– je: If the values were equal, jump to a label

● E.g., cmp %rax, $0 followed by je foo will jump to label “foo” if the value of %rax was zero

– jne: If the values were not equal, jump to a label
● E.g., cmp %rax, $0 followed by jne foo will jump to label “foo” if the value of %rax was NOT zero

Question

● What is the value of %rax after these instructions execute?
 mov $5, %rcx

 and $0, %rax

 cmp $0, %rcx

 je skip

 add %rcx, %rax

skip:

 sub $1, %rax

– A) 0
– B) 1
– C) 4
– D) 5
– E) Cannot be determined

Hand-writing x86_64 assembly

● Minimal template (returns 0; known to work on stu):

● Save in .s file and build with gcc as usual (don’t use “-c” flag)
– Run program and view return value (final value of %rax) in bash with “echo $?”

● Use gdb to trace execution
– start: begin execution and pause at main

– disas: print disassembly of current function

– ni: next instruction (step over function calls)

– si: step instruction (step into function calls)

– p/x $rax: print value of RAX (note “$” instead of “%”)

– info registers: print values of all registers

.globl main # makes “main” a global symbol
main: # execution will start here

 mov $0, %rax # your code goes here

 ret # “return from “main”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20

