

CS 261
Fall 2021

Mike Lam, Professor

Binary Arithmetic

Binary Arithmetic

● Topics
– Basic addition
– Overflow
– Multiplication & division
– Floating-point preview

Basic addition

● Binary and hex addition are fundamentally the same as
decimal addition
– Add digit-by-digit, using a carry as necessary
– Result could require one more bit than the operands

 12540
+ 4683

 10011100
+ 1010110

 b0994f
+ 7120

Dec Bin

Hex

Basic addition

● Binary and hex addition are fundamentally the same as
decimal addition
– Add digit-by-digit, using a carry as necessary
– Result could require one more bit than the operands

 11
 12540
+ 4683
 17223

 111
 10011100
+ 1010110
 11110010

 1
 b0994f
+ 7120
 b10a6f

Dec Bin

Hex

Overflow

● Unsigned addition is subject to overflow
– Caused by truncation to integer size

 1
 994f
+ 7120
 10a6f = 0a6f

Truncation!

(assume a 16-bit integer)

Overflow

● Two’s complement addition is identical to unsigned mechanically
– Subject to both positive and negative overflow
– Overflows if carry-in and carry-out differ for sign bit
– Same for subtraction (overflows if borrow-in and borrow-out of sign bit differ)

NOTE: this figure is printed incorrectly in your textbook!

Overflow

● Examples (in 4-bit two’s complement):

1 1 2’s Comp.

 1 1 0 1 -3
+ 0 1 0 0 + 4
 0 0 0 1 1

Carry in, carry out
(OK)

 1 2’s Comp.

 0 0 1 1 3
+ 0 0 1 0 + 2
 0 1 0 1 5

No carry in, no carry out
(OK)

 1 2’s Comp.

 0 1 0 1 5
+ 0 1 0 0 + 4
 1 0 0 1 -7

Carry in, no carry out
(OVERFLOW!)

 2’s Comp.

 0 0 0 1 1
+ 1 1 1 0 + -2
 1 1 1 1 -1

No carry in, no carry out
(OK)

1 1 1 2 2’s Comp.

 0 0 0 1 1
- 0 0 1 0 - 2
 1 1 1 1 -1

Borrow in, borrow out
(OK)

Observation: In two’s complement, adding the inverse is equivalent to subtracting!

(sign bits in blue)

Case study: MTG Arena

https://www.youtube.com/watch?v=8cqID9lpC3I

● “Evra, Halcyon Witness”
– Card from Magic: The Gathering Arena (PC video game)
– Ability: gain player life equal to Evra’s power (“lifelink”)
– Ability: exchange player life total w/ Evra’s power
– Alternate abilities to double life every few turns
– Overflows at ~2 billion b/c player life is stored as a signed 32-bit integer

https://www.youtube.com/watch?v=8cqID9lpC3I

Multiplication & division

● Like addition, fundamentally the same as base 10
– Actually, it’s even simpler!
– Same regardless of encoding

● Special case: multiply by powers of 2 (shift left)

● Division is expensive!
– Special case: divide by powers of two (shift right)

● Logical shift for unsigned numbers, arithmetic shift for signed numbers

 101 (5)
x 11 (3)
 101
101
1111 (15)

2 << 1 = 4 (2 * 2)
1 << 2 = 4 (1 * 2 * 2)

1 << 4 = 16 (1 * 2 * 2 * 2 * 2)
4 << 1 = 8 (4 * 2)
4 << 2 = 16 (4 * 2 * 2)

Review

● One-byte integers:

Binary Unsigned Two’s C

1111 1111 255 -1
1111 1110 254 -2
… … …
1000 0001 129 -127
1000 0000 128 -128
0111 1111 127 127
0111 1110 126 126
… … …
0000 0001 1 1
0000 0000 0 0

Positive overflow when x + y > 127
Negative overflow when x + y < -128

Overflow
when x + y > 255

Binary fractions

● Now we can store integers
– But what about general real numbers?

● Extend positional binary integers to store fractions
– Designate a certain number of bits for the fractional part
– These bits represent negative powers of two
– (Just like fractional digits in decimal fractions!)

101.101
 4 2 1 1/2 1/4 1/8

4 + 1 + 0.5 + 0.125 = 5.625 (alternatively: 5 + 5/8)

Another problem

● For scientific applications, we want to be able to
store a wide range of values
– From the scale of galaxies down to the scale of atoms

● Doing this with fixed-precision numbers is difficult
– Even signed 64-bit integers

● Perhaps allocate half for whole number, half for fraction
● Range: ~2 x 10-9 through ~2 x 109

Floating-point numbers

● Scientific notation to the rescue!
– Traditionally, we write large (or small) numbers as x ∙ 10e

– This is how floating-point representations work
● Store exponent and fractional parts (the significand) separately
● The decimal point “floats” on the number line
● Position of point is based on the exponent

 0.0123 x 102
 0.123 x 101

1.23 = 1.23 x 100
 12.3 x 10-1
 123.0 x 10-2

Floating-point numbers

● However, computers use binary
– So floating-point numbers use base 2 scientific notation (x ∙ 2e)

● Fixed width field
– Reserve one bit for the sign bit (0 is positive, 1 is negative)
– Reserve n bits for biased exponent (bias is 2n-1 - 1)

● Avoids having to use two’s complement

– Use remaining bits for normalized fraction (implicit leading 1)
● Exception: if the exponent is zero, don’t normalize

2.5 → 0 1000 010
Sign (+)

Exponent (8 - 7 = 1)

Significand: (1).01 = 2.5

Value = (-1)s x 1.f x 2E

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16

