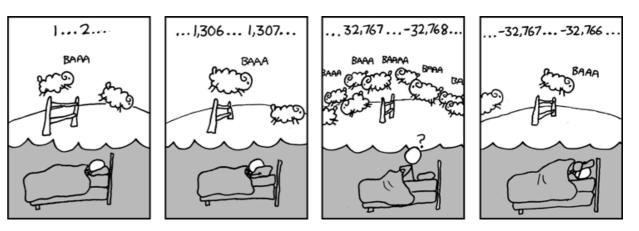
CS 261 Fall 2021

Mike Lam, Professor



https://xkcd.com/571/

Integer Encodings

Integers

- Topics
 - C integer data types
 - Unsigned encoding
 - Signed encodings
 - Conversions

Integer data types in C99

C data type	Minimum	Maximum		
[signed] char	-127	127	1	
unsigned char	0	255	1	
short	-32,767	32,767	2	
unsigned short	0	65,535	2 by	
int	-32,767	32,767	2	
unsigned	0	65,535	2 by	
long	-2,147,483,647	2,147,483,647	1	
unsigned long	0	4,294,967,295	4 by	
int32_t	-2,147,483,648	2,147,483,647	1	
uint32_t	0	4,294,967,295	4 by	
int64_t	-9,223,372,036,854,775,808	9,223,372,036,854,775,807	0.1	
uint64_t	0	18,446,744,073,709,551,615	8 b <u>y</u>	

Figure 2.11 Guaranteed ranges for C integral data types. The C standards require that the data types have at least these ranges of values.

Integer data types on stu

All sizes in bytes; sizes in red are larger than mandated by C99

- int8_t 1 uint8_t 1 bool 1
- int16_t 2 uint16_t 2
- int32_t 4 uint32 t 4
 - int64_t 8
- uint64_t 8
 - size_t 8

- char 1 unsigned char 1
 - short 2
- unsigned short 2
 - int 4
 - unsigned int 4
 - long 8
 - unsigned long 8
 - long long 8
- unsigned long long 8

Unsigned integer encoding

- Bit i represents the value 2^{\prime}
 - ⁻ Bits typically written from most to least significant (i.e., $2^{3} 2^{2} 2^{1} 2^{0}$)
 - This is the same encoding we saw last time!
 - No representation of negative numbers

$$1 = 1 = 0 \cdot 2^{3} + 0 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0} = [0001]$$

$$5 = 4 + 1 = 0 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0} = [0101]$$

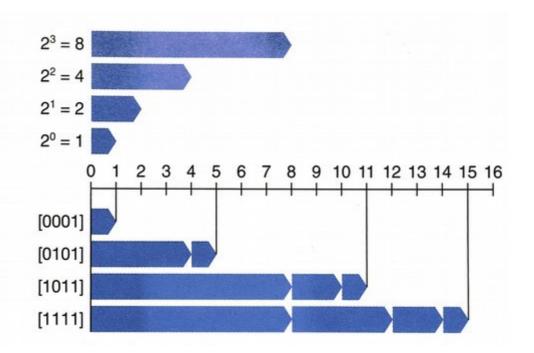
$$11 = 8 + 2 + 1 = 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} = [1011]$$

$$15 = 8 + 4 + 2 + 1 = 1 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} = [1111]$$

Unsigned integer encoding

- Textbook's notation
 - Each bar represents a bit
 - Add together bars to represent the contributions of each bit value to the overall value

Figure 2.12 Unsigned number examples for w = 4. When bit *i* in the binary representation has value 1, it contributes 2^i to the value.



Signed integer encodings

- Sign magnitude
 - Most natural/intuitive but hardest to implement
- Ones' complement
 - Cleaner arithmetic but less intuitive
- Two's complement
 - Cleanest arithmetic but most complicated
 - Most modern signed integer types use this!

Sign magnitude

• Sign magnitude

- Interpret most-significant bit as a sign bit
- Interpret remaining bits as unsigned number x (the magnitude)
 - If negative, absolute value is x
- To negate: flip the sign bit
- Disadvantages:
 - Two zeros: -0 and +0 [1000 and 0000]
 - Less useful for arithmetic because the sign bit has no relationship with the magnitude--cannot use unsigned arithmetic logic!

0 011 = 3	0 111 (7)
1 011 = -3	<u>1 011 (-3)</u>
0 111 = 7	? 010

- What is the negation of 10110 in sign magnitude?
 - A) 10110
 - B) 10111
 - C) 01001
 - D) 01011
 - E) 01010
 - F) 00110

- Which of the following are negative numbers if interpreted as a sign magnitude integer?
 - A) 10110
 - B) 10111
 - C) 01001
 - D) 01011
 - E) 01010
 - F) 00110

Ones' complement

Ones' complement

- Interpret most-significant bit as a sign bit
- Interpret ALL bits as unsigned integer x
 - If negative, absolute value is [11111...1] x
- To negate: flip all the bits (binary NOT)
- Disadvantages:
 - Still have two representations of zero (1111 and 0000)
 - Also, less useful for arithmetic than two's complement
 - Must "end-around carry" to preserve results

		1			
0 011 =	3	Θ	111	(7)	
1 100 =	-3			(-3)	
0 111 -	7	1 0	011		
0 111 =	1		+1	(end-around c	arry)
		0	100		

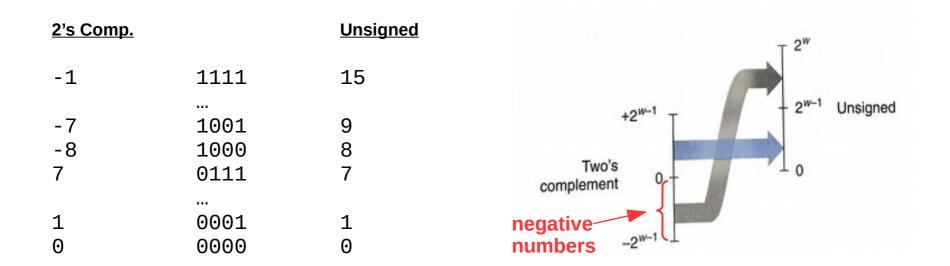
- What is the negation of 10110 in ones' complement?
 - A) 10110
 - B) 10111
 - C) 01001
 - D) 01011
 - E) 01010
 - F) 00110

- Which of the following are negative numbers if interpreted as a ones' complement integer?
 - A) 10110
 - B) 10111
 - C) 01001
 - D) 01011
 - E) 01010
 - F) 00110

Two's complement

Two's complement

- Interpret most-significant bit as a sign bit
- Interpret ALL bits as unsigned integer x
 - If negative, absolute value is $2^{N} x$ where N is the number of bits
- ⁻ To negate: **subtract value from 2**^{N} where N is the number of bits
- One zero; positive numbers wrap to negative ones halfway through



Two's complement

- Two's complement advantage: uses unsigned arithmetic logic
 - (ignore carries out of the sign bit for now)
 - Ex: 5 3 = 5 + (-3) = 0101 + 1101 = 0010 (2)
 - Ex: 1 3 = 1 + (-3) = 0001 + 1101 = 1110 (-2)
 - Ex: -2 3 = (-2) + (-3) = 1110 + 1101 = 1011 (-5)

$$0011 = 3$$
 $0111 (7)$ 1100 $1101 (-3)$ $1101 = -3$ $0100 (4)$

0111 = 7

Two's complement

- Alternate interpretation: value of most significant bit is negated
 - i.e., start at most negative number and build back up towards zero

Figure 2.12 Unsigned number examples for w = 4. When bit *i* in the binary representation has value 1, it contributes 2^i to the value.

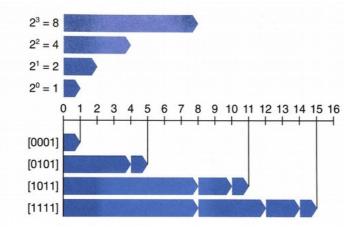
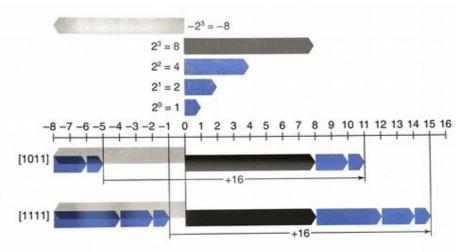


Figure 2.16

Comparing unsigned and two's-complement representations for w = 4. The weight of the most significant bit is -8 for two's complement and +8for unsigned, yielding a net difference of 16.



Two's complement trick

- Alternate way to negate in two's complement
 - Flip the bits (binary NOT) then add one

Ex: 5 = 0101 \rightarrow (binary NOT) \rightarrow 1010 \rightarrow (add one) \rightarrow 1011 = -5 (-8 + 2 + 1)

Aside: Why does this work? The sum of a number x and $\sim x$ is all ones (or 2^N-1 where N is the number of bits), so $\sim x$ can be expressed as 2^N-1 - x. Because negating x in two's complement is equivalent to subtracting x from 2^N, if we add one to $\sim x$ the results are equal:

 $x + 1 = (2^{N} - 1 - x) + 1 = 2^{N} - x$

- What is the negation of 10110 in two's complement?
 - A) 10110
 - B) 10111
 - C) 01001
 - D) 01011
 - E) 01010
 - F) 00110

- Which of the following are negative numbers if interpreted as a two's complement integer?
 - A) 10110
 - B) 10111
 - C) 01001
 - D) 01011
 - E) 01010
 - F) 00110

Ones' vs. Two's

- Ones' complement
 - Interpret all bits as unsigned integer x
 - Value is [11111...1] x
 - I.e., the complement with respect to ones
- Two's complement
 - Interpret all bits as unsigned integer *x*
 - Value is $2^{N} x$ where N is the number of bits
 - I.e., the complement with respect to a power of two

Caution: language technicalities

- Ones' complement and two's complement are both an operation and an encoding
 - E.g., "perform two's complement" vs "the number is stored in two's complement"
- The operation represents the action necessary to negate a number in that encoding.
 - E.g., performing two's complement (ones' complement and add one) negates a number in two's complement encoding
- If you have a value in a particular encoding:
 - If the sign bit is not set, it's a positive number
 - If it is set, perform the operation to recover the positive value

We will avoid using the operation terminology in this course!

Integer encodings

- Information = Bits + Context
 - What does "1011" mean? It depends!

Unsigned:11Sign magnitude:-3Ones' complement:-4Two's complement:-5

Comparison

- We'll see one more signed integer encoding next week: "offset binary" / "biased" / "excess"
 - For now, here's a comparison (for 1-byte integers):

<u>Binary</u>	<u>Unsigned</u>	<u>Sign Mag</u>	<u>Ones' C</u>	<u>Two's C</u>	<u> 0ffset-127</u>
1111 1111	255	-127	-0	-1	128
1111 1110	254	-126	-1	-2	127
1000 0001	129	-1	-126	-127	2
1000 0000	128	-0	-127	-128	1
0111 1111	127	127	127	127	0
0111 1110	126	126	126	126	-1
0000 0001	1	1	1	1	-126
0000 0000	0	0	0	0	-127

- Which of the following are guaranteed to be "safe" (i.e., the value will always be preserved)?
 - A) Smaller unsigned \rightarrow larger unsigned
 - B) Smaller two's comp. \rightarrow larger two's comp.
 - C) Larger \rightarrow smaller (unsigned or two's comp.)
 - D) Unsigned \rightarrow two's comp.
 - E) Two's comp. \rightarrow unsigned

Conversions

 Smaller unsigned → larger unsigned $0101 (5) \rightarrow 0000 0101 (5)$ - Safe; zero-extend to preserve value • Smaller two's comp. \rightarrow larger two's comp. $1101 (-3) \rightarrow 1111 1101 (-3)$ - Safe; sign-extend to preserve value 0000 0101 (5) \rightarrow 0101 (5) $0011 \ 0101 \ (53) \rightarrow 0101 \ (5)$ • Larger \rightarrow smaller (unsigned or two's comp.) - Overflow if new type isn't large enough to fit (truncate) $0101(5) \rightarrow 0101(5)$ • Unsigned \rightarrow two's comp. $1101 (13) \rightarrow 1101 (-3)$ - Overflow if first bit is non-zero (otherwise, no change) • Two's comp. \rightarrow unsigned $0101(5) \rightarrow 0101(5)$ $\underline{1}$ 101 (-2) \rightarrow 1101 (13) - Overflow if value is negative (otherwise, no change)