

CS 261
Fall 2021

Mike Lam, Professor

C Introduction
Comparison w/ Java, Memory Model, and Pointers

https://xkcd.com/138/

The C Language

● Systems language originally developed for Unix
● Imperative, compiled language with static typing
● “High level” at the time; now considered low-level
● Allows “direct” access to memory (subject to architecture)
● Many compilers and standards: we’ll use GNU and C99

Ken Thompson
(inventor of B language

and Unix)

Dennis Ritchie
(inventor of C language
and coauthor of C book)

Brian Kernighan
(coauthor of C book and

contributor to Unix/C)

Review: Compilation

usually combined

Review: Makefiles

● The compilation process is usually streamlined using
a build system (we'll use Make)

● Provide a “Makefile” that contains targets,
dependencies, and build commands

● Example Makefile:

hello: hello.c
 gcc -g -O0 -o hello hello.c

target dependency

build command

Hello, World

● How is this different from Java?

#include <stdio.h>

int main()
{
 printf("Hello, world!\n");
 return 0;
}

Similarities to Java

● Semicolons!
● Comments (both // and /* */ styles)
● Basic types: int, char, float, double

– Char is just a number
● Blocks w/ curly braces
● Loops: do, while, for
● Switch statements

– Parameter must be integer
● Function definitions

Differences from Java

● Preprocessor macros (#include, #define)
● Functions must be declared before use

– New distinction: declaration vs. definition
– Interface (.h) vs implementation (.c)

● Fewer built-in types
– Booleans are “bool” (not built-in; must include stdbool.h)

● Actually integers: 0 is “false”, anything else is “true”

– No built-in string type (C strings are just arrays of chars)
● No classes, packages, or built-in exceptions
● Different I/O functions: printf, fgets, scanf (in stdio.h)

– For printf, embed variables in output using formatting codes

– E.g., use "%d" to embed an integer (see documentation for more codes)

Variables in C

● Declared by type and name like in Java
– Can be initialized when declared (this is recommended!)
– E.g., int file_counter = 0;

– If not initialized, contents are undefined until assigned
– Can be declared ‘const’

● Read-only, similar to ‘final’ in Java—must be initialized!

● Multiple declarations per line are allowed
– E.g., int x, y;

– E.g., int x = 0, y = 1;

– Mixed-initialization and multiple declarations is not recommended
● E.g., int x, y = 1; // only initializes y!

C data types

● Integer types: char and int
– Can be signed (default) or unsigned

– short, long, and long long modifiers for int

● Real types: float and double
– Floating-point representation

Data type Size on stu (bytes)

char / bool 1

short int 2

int 4

long int / long long int 8

float 4

double 8

1 byte = 8 bits

Explicit-width integer types

● C standard doesn't mandate integer widths
– It only specifies a minimum
– This causes problems when different architectures or

compilers provide different actual sizes

● More portable alternative: stdint.h types
– Basic format: XintY_t

– X can be empty (signed) or 'u' (unsigned)
– Y can be 8, 16, 32, or 64 (bits)
– Examples: int8_t, uint8_t, int32_t, uint64_t

Variable attributes (CS 430 preview)

● Name
● Value
● Type
● Address
● Scope
● Lifetime

Variable attributes (CS 430 preview)

● Name: identifier used to refer to the variable in code
● Value: current contents of a variable
● Type: range of values a variable can store
● Address: location of variable’s value

– Most common locations: register, stack, heap, or static data
– We’ll focus on the non-register locations for now

● Scope: code range where a variable is visible
– Global: visible anywhere in file (code module)
– Local: visible only inside a function or block

● Lifetime: time period when variable access is valid
– Static: allocated when program starts; de-allocated on exit
– Dynamic: allocated and de-allocated while program runs

Memory management

● The fundamental difference between C and Java is how
they handle memory
– Java is a managed language, where the compiler and runtime

handle memory management for the programmer and direct
access to memory is difficult or impossible

– C is not a managed language, meaning we can directly access
and manipulate memory using arbitrary addresses

– This makes it possible to do the kind of low-level experimentation
we want to do in CS 261, and it also enables optimizations that
are not possible using Java

– However, it is also far more dangerous!

“With great power comes great responsibility.”

Pointers

● A pointer is a variable that contains a memory address
● Type modifier: “*” indicates one level of pointer

– int *p;

– int **p; // yes, this works

● Often initialized using the “&” operator (“address of”)
– int x;

– p = &x;

● Dereferenced with “*” operator (“follow the pointer”)
– *p = 7;

● Set a pointer to NULL to mark them as invalid
● C does NOT check pointers before dereferencing them!

– int *p = NULL; *p = 123; // this will segfault!

Types

● Pointers are variables, so they have a type
– The type describes what kind of data it points to
– An int has type int

– A pointer to an int has type int*

– A pointer to a pointer to an int has type int**

● Expressions also have a type
– If x has type int, then x+4 also has type int

– If x has type int, then &x has type int*

– If p has type int*, then *p has type int

– If p has type int*, then &p has type int**

What will this C code print?

 int a = 42;

 int b = 7;

 int c = 999;

 int *t = &a;

 int *u = NULL;

 printf("%d %d\n", a, *t);

 c = b;

 u = t;

 printf("%d %d\n", c, *u);

 a = 8;

 b = 9;

 printf("%d %d %d %d\n", b, c, *t, *u);

 *t = 123;

 printf("%d %d %d %d %d\n", a, b, c, *t, *u);

Question

● What does the following C code do?
int* c, d;

– A) Declares two integers “c” and “d”
– B) Declares two integer pointers “c” and “d”
– C) Declares one integer pointer “c” and one integer “d”
– D) Declares one integer “c” and one integer pointer “d”
– E) The behavior is undefined

Pointer declaration caveat

● The following code doesn't do what you think it does:
– int* c, d;

● Recommendation: put asterisk next to variable names
in declarations
– int *c, *d;

– Or declare only one variable per line!
● Exception: function declarations (since there can only

be one return value)
– int* myfunc();

C/Linux memory model

0

static code

static data

heap

stack

400000

601000

(randomized)

≈ 7fff00000000

(randomized)

≈ 1000000

local variables

global variables &
'static' local variables

dynamically-
allocated memory

● Every process has its own virtual
private memory called an address
space.

● The address space is divided into
regions. Some regions are static
and do not change size while the
process runs, while others are
dynamic, changing size if
necessary.

● The stack region expands when a
function is called and shrinks when
a function returns. The heap region
expands when malloc() is called.

● Some regions begin at a
randomized location (different on
every run) for security reasons.

Dynamic memory allocation

● If you do not know how much memory you need until after the
program is running, you must allocate memory on the heap

● Allocate with malloc() function (or calloc)
– Pass it the number of bytes you need
– Often calculated using the sizeof operator

– Returns a pointer to the beginning of the allocated region
● De-allocate with free() when you are done

– Pass it a pointer to the beginning of the region you want to free
– Good code practice: set pointer to NULL afterwards

– Neglecting to free memory will result in a memory leak when the
reference is no longer valid (e.g., the pointer goes out of scope)

Variable summary

● Global variables
– Static data address, global scope, static lifetime

● Local variables (regular)
– Stack address, local scope, dynamic lifetime
– Valid while the function executes

● Local variables declared ‘static’
– Static data address, local scope, static lifetime
– Similar to global variable but with local scope

● Dynamically-allocated memory
– Heap address, local scope (via pointer), dynamic lifetime
– Valid from malloc until free
– Pointer(s) themselves are usually local variables (see above)

Memory model example

int global_var;

void foo()

{

 static int foo_st_var;

 int foo_var;

}

int main()

{

 int main_var;

 int *malloc_var = (int*)malloc(sizeof(int));

 foo();

 return 0;

}

For each of the following
variables, classify their
address as static, stack, or
heap:

● global_var
● foo_st_var
● foo_var
● main_var
● malloc_var
● *malloc_var

Does this program leak
memory? If so, where,
and how would you fix it?

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

