
CS 261 Fall 2021

Mike Lam, Professor

https://xkcd.com/676/

Computer Systems I: Introduction

Question

What will be the output of this C program?

```
#include <stdio.h>
int main() {
    int x = 40000;
    int y = 50000;
    if ((x * x) < (y * y)) {
        printf("Less than\n");
    } else {
        printf("Not less than\n");
    }
    return 0;
}</pre>
```

- A) "Less than"
- B) "Not less than"
- C) Neither of the above

Question

What will be the output of this C program?

```
#include <stdio.h>
int main() {
    double a = 1e20;
    double b = -a;
    double c = 3.14;
    if (((a+b) + c) == (a + (b+c))) {
        printf("Equal!\n");
    } else {
        printf("Not equal!\n");
    }
    return 0;
}
```

- A) "Equal!"
- B) "Not equal!"
- C) Neither of the above

Question

 Which of the following versions of a "matrix copy" routine will run the fastest?

```
- A) for (int i = 0; i < 2048; i++) {
    for (int j = 0; j < 2048; j++) {
        dst[i][j] = src[i][j];
    }
}
- B) for (int j = 0; j < 2048; j++) {
    for (int i = 0; i < 2048; i++) {
        dst[i][j] = src[i][j];
    }
}</pre>
```

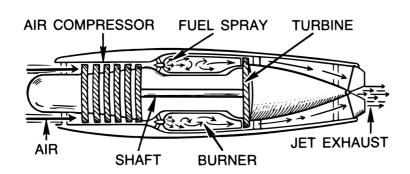
 C) Neither; they will always run at approximately the same speed.

What's happening?

 Something about our mental model of these programs does not match the system on which we're running them.

What is a "system?"

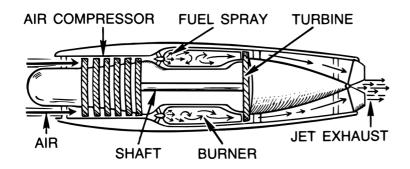
- What is a "system?"
 - Set of interacting components
 - More than the sum of its parts

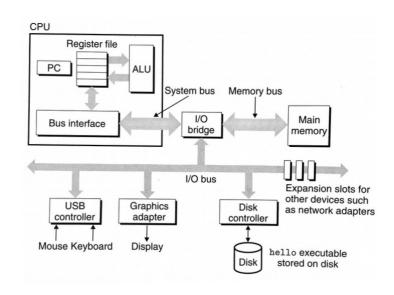


Jet engine

Computer

- What is a "system?"
 - Set of interacting components
 - More than the sum of its parts

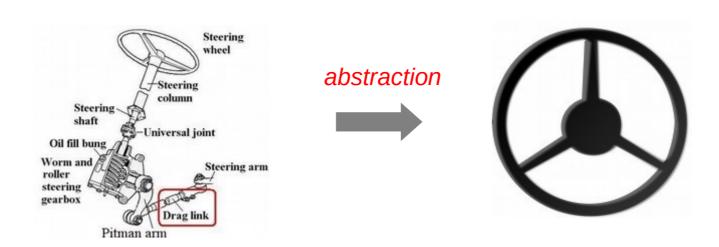




Jet engine

Computer

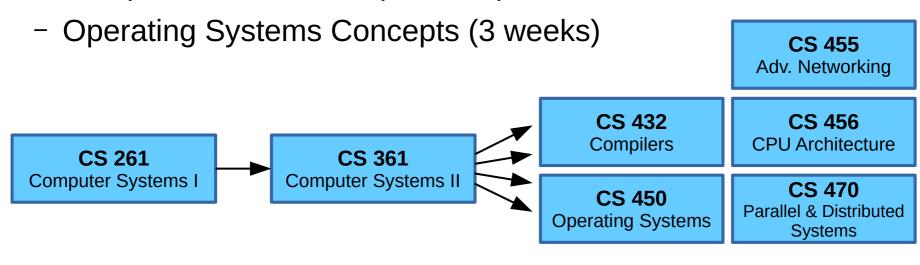
- What is a "system?"
 - Set of interacting components
 - More than the sum of its parts



Jet engine Computer

- A computer system consists of multiple hardware and software components that work together to run user applications.
 - We use complex computer systems every day
 - Our goal: peel back (some of) the complexity
 - See (some of) what's "under the hood"

- What is a process? What is a file?
 - These are examples of abstraction; "fake" views of reality that reduce complexity for users
 - Key ideas: ignore details and focus on interfaces
 - Especially important in large, complicated systems
 - Understanding abstractions can improve your ability to use them effectively

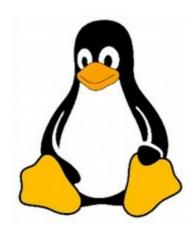


Course Objectives

- Explain machine-level representation of data and code
- Summarize the architecture of a computer
- Explain how complex systems are built from simple components
- Translate high-level code into assembly and machine language
- Write code to emulate the functionality of a computer
- Cultivate a sense of control over computer systems
- Gain an appreciation for software development tools
- Develop a sense of play when writing code
- Appreciate the complexity of systems-level software

Systems courses

- CS 261 units:
 - C and Linux (3 weeks)
 - Binary Representations (2-3 weeks)
 - Assembly and Machine Code (2-3 weeks)
 - Computer Architecture (3 weeks)


Fundamentals of digital, single-process systems

Multi-process systems and networking

In-depth study of a particular kind of complex system

CS 261

- What this course is NOT:
 - Programming 101 I will assume you can program
 - However, we will spend a few weeks learning C
 - Electronics 101 we won't be going THAT deep
 - If you're interested, check out PHYS 240/250
 - Linux 101 but you have the Unix Users Group
 - InstallFest and weekly meetings
 - https://www.jmunixusers.org

CS 261

- This is not an "easy" course
 - But you **can** handle it!
 - Be prepared to read and work a lot
 - Don't be afraid to experiment
 - Growth vs. fixed mindset
 - Take advantage of office hours and Piazza
 - Start assignments early and ask questions

Semester-specific info

- The remaining slides are specific to Fall 2021
 - All slides are posted on the website (calendar page)
- This is likely to be a challenging semester
 - I pledge to extend extra grace and patience
 - I pledge to keep the classroom as safe as possible
 - I ask that you do the same

Class Policies

- Masks must be worn in class
 - Must cover both your mouth and nose
 - (I have spare disposable masks if you need one)
- No food or drink is allowed
 - (Quick sips are ok w/ me stay hydrated!)
- Recommended: sanitize your table before and after class
 - Spray sanitizer available at front podium
- If you are ill, please stay home
 - Contact me ASAP regarding missed class
- These policies may change
 - Changes will be announced via Canvas message

Course Design

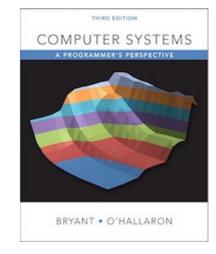
- This is a flipped class (except for today)
 - Ahead of time: watch lecture, do reading, take quiz
 - During class: work on labs in small groups
 - Outside class: work on projects, take module tests

	Monday	Tuesday	Wednesday	Thursday	Friday
In-class		Lab		Lab	
Out-of-class	Lecture videos, reading, and quiz		Lecture videos, reading, and quiz		
	Project work	Project work	Project work	Project work	Project work (deadlines every 2-3 weeks)

Video playlists, quizzes, and labs all have a common tag (today's is "01")

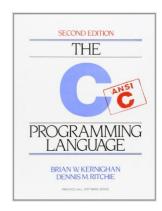
Course Components

- Public website (w3.cs.jmu.edu/lam2mo/cs261)
 - Syllabus, calendar, project descriptions, and resources
 - Links to lecture videos (YouTube, already posted)
 - Most recorded for Fall 2020; all still relevant this year
 - Links to slides (posted before class, may differ slightly from videos)


Canvas course

- Quizzes, lab submissions, and module tests
- Grades and private files (e.g., lab solutions)
- Access to Piazza Q&A
- Student server (stu.cs.jmu.edu)
 - Project development and submission
- Piazza
 - Q&A (especially re: projects)

Make sure you can access ALL of these!


Textbooks

- Required textbook: "Computer Systems"
 - "CS:APP" textbook from Carnegie-Mellon
 - A practical, example-filled introduction
 - Electronic rental available via RedShelf
 - Reserve copy at the Rose library (*)

Important: Readings are listed on their associated quiz

- Recommended book: "The C Programming Language"
 - Brian Kernighan and Dennis Ritchie (creator of C)
 - This is "the book" about C (we'll refer to it as "CPL")
 - Scanned excerpts on Canvas (do not redistribute!)

Course Grades

Quizzes and Labs	25%	
Programming Projects	30%	
Unit Tests	25%	
Exams	20%	

- Quizzes and labs are formative
 - Designed to help you learn
- Tests/exams are summative
 - Designed to assess what you have learned
- Projects are both
 - Designed to help you learn C and reinforce other course concepts
 - Also designed to assess whether you are ready for CS 361

Class Policies

- Class attendance is necessary and expected
 - We will be completing labs most class periods
 - Find a group (2 or 4 people) to work with consistently
 - Make a name card and bring it every day
- Every person should fill out a separate copy of the lab
 - Work together and check each other
 - Ask for help if you are stuck or want to confirm something

Class Policies

- Submit as PDF on Canvas when done
 - Scan as a black-and-white PDF
 - Recommended apps: Scanner Pro, Scannable, Genius Scan
 - Other instructions: https://wiki.cs.jmu.edu/student/canvas/start
 - You may NOT submit raw photos
- Labs are "lightly graded" (w/o individual mistakes marked)
 - Solutions will be posted on Canvas (under Files → Lab Solutions)
 - Come to office hours if you wish to discuss individual questions

- The projects in this course are VERY important!
 - One purpose of this course is to ensure you are ready to tackle harder projects in CS 361 and the system electives
- Projects are individual and mandatory
 - A "good faith" submission shows evidence of significant work and investment in writing a solution
 - A "good faith" submission gets you an "F" (50 or 60 points) instead of a zero!

- The JMU Honor Code applies on ALL assignments
 - Violations may be sent to the honor council
 - See relevant section in the syllabus
 - All quizzes, module tests, and exams must be done by yourself with no assistance aside from what is allowed in the assignment description in Canvas
- All submitted labs must represent YOUR work
 - You will work in groups to discuss the answers
 - By submitting a PDF on Canvas, you are asserting that these answers are YOUR answers and that you understand WHY you have answered the way you have

- All submitted project code must be YOUR work entirely
 - You may work in groups to discuss general approaches (in fact, I encourage this; use *pseudocode* if necessary)
 - However, one goal of the projects in this course is to develop individual competency, so you may NOT share code with anyone who is not a TA or CS 261 instructor
 - This includes letting someone examine or take a screenshot of your code, or "talking it through" with them line-by-line
 - Do not store your solution in a public repository
 - If you have questions about this, please ask!

- There are a total of three sections of CS 261
 - Two Lam sections (T-Th) and one Weikle section (M-W)
 - Many course materials are shared
 - You are welcome to study with students from other sections, but you must attend and submit assignments to the section you are registered for

Office hours

- My office hours: Monday through Friday, 10:00-11:00am
 - In person: ISAT/CS 227
 - Please avoid congregating in large groups in the hallways!
 - If I'm unavailable when you arrive in person, use the bit.ly link below
 - You'll join the same queue as virtual attendees and I will call you when I'm available (you'll leave a cell number as part of sign-up)
 - Virtual via Zoom: bit.ly/lam-office-hours-f21
 - This is strongly preferred for coding questions
 - Be prepared to share your screen!
 - Outside office hours via appointment: calendly.com/lam2mo
- CS TAs: in-person and virtual office hours: bit.ly/CS-TAs
 - 261-specific TAs: Ryan Showalter and Kyle LaCanna

TODOs in the next few days

- If you haven't already:
 - Take welcome survey on Canvas
 - Take syllabus quiz on Canvas
 - Read CS:APP Ch. 1 and take Quiz 01 (due tomorrow)
- Before class next Tuesday:
 - Review these slides and the syllabus and come with questions
 - Watch "Command line and C compilation" lecture videos
 - Read 02-CPL excerpts (on Canvas under Files → Readings)
 - Take Quiz 02 (due Monday)
 - Make sure you can log into stu
 - Instructions at the top of Tuesday's lab: w3.cs.jmu.edu/lam2mo/cs261/02-cmd_line.html
 - Make sure you can access Piazza
 - Skim the project guide and Project 0 description (on website)

Intro lab

- Material from Chapter 1
 - Front page: Computer Organization
 - Back page: C Compilation
- Submit as PDF on Canvas when done
 - Scan as a black-and-white PDF
 - Recommended apps: Scanner Pro, Scannable, Genius Scan
 - Other instructions: https://wiki.cs.jmu.edu/student/canvas/start
 - You may NOT submit raw photos
 - Let me know after you submit and I will check it on my end
 - Once you have verified a satisfactory submission, please feel free to leave – have a great weekend and I'll see you next Tuesday!