Integer Encodings
Integers

• Topics
 – C integer data types
 – Unsigned encoding
 – Signed encodings
 – Conversions
Integer data types in C99

<table>
<thead>
<tr>
<th>C data type</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>[signed] char</td>
<td>-127</td>
<td>127</td>
<td>1 byte</td>
</tr>
<tr>
<td>unsigned char</td>
<td>0</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>short</td>
<td>-32,767</td>
<td>32,767</td>
<td>2 bytes</td>
</tr>
<tr>
<td>unsigned short</td>
<td>0</td>
<td>65,535</td>
<td></td>
</tr>
<tr>
<td>int</td>
<td>-32,767</td>
<td>32,767</td>
<td>2 bytes</td>
</tr>
<tr>
<td>unsigned</td>
<td>0</td>
<td>65,535</td>
<td></td>
</tr>
<tr>
<td>long</td>
<td>-2,147,483,647</td>
<td>2,147,483,647</td>
<td>4 bytes</td>
</tr>
<tr>
<td>unsigned long</td>
<td>0</td>
<td>4,294,967,295</td>
<td></td>
</tr>
<tr>
<td>int32_t</td>
<td>-2,147,483,648</td>
<td>2,147,483,647</td>
<td>4 bytes</td>
</tr>
<tr>
<td>uint32_t</td>
<td>0</td>
<td>4,294,967,295</td>
<td></td>
</tr>
<tr>
<td>int64_t</td>
<td>-9,223,372,036,854,775,808</td>
<td>9,223,372,036,854,775,807</td>
<td>8 bytes</td>
</tr>
<tr>
<td>uint64_t</td>
<td>0</td>
<td>18,446,744,073,709,551,615</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.11 Guaranted ranges for C integral data types. The C standards require that the data types have at least these ranges of values.
Integer data types on stu

All sizes in bytes; sizes in red are larger than mandated by C99

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Size (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
</tr>
<tr>
<td>unsigned char</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
</tr>
<tr>
<td>unsigned short</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
</tr>
<tr>
<td>unsigned int</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>8</td>
</tr>
<tr>
<td>unsigned long</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
</tr>
<tr>
<td>unsigned long long</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Size (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>int8_t</td>
<td>1</td>
</tr>
<tr>
<td>uint8_t</td>
<td>1</td>
</tr>
<tr>
<td>bool</td>
<td>1</td>
</tr>
<tr>
<td>int16_t</td>
<td>2</td>
</tr>
<tr>
<td>uint16_t</td>
<td>2</td>
</tr>
<tr>
<td>int32_t</td>
<td>4</td>
</tr>
<tr>
<td>uint32_t</td>
<td>4</td>
</tr>
<tr>
<td>int64_t</td>
<td>8</td>
</tr>
<tr>
<td>uint64_t</td>
<td>8</td>
</tr>
<tr>
<td>size_t</td>
<td>8</td>
</tr>
</tbody>
</table>
Unsigned integer encoding

• Bit i represents the value 2^i
 - Bits typically written from most to least significant (i.e., $2^3 \ 2^2 \ 2^1 \ 2^0$)
 - This is the same encoding we saw last time!
 - No representation of negative numbers

$$1 = 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = [0001]$$
$$5 = 4 + 1 = 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = [0101]$$
$$11 = 8 + 2 + 1 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = [1011]$$
$$15 = 8 + 4 + 2 + 1 = 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = [1111]$$
Unsigned integer encoding

- Textbook’s notation
 - Each bar represents a bit
 - Add together bars to represent the contributions of each bit value to the overall value

Figure 2.12
Unsigned number examples for \(w = 4 \).
When bit \(i \) in the binary representation has value 1, it contributes \(2^i \) to the value.

2³ = 8
2² = 4
2¹ = 2
2⁰ = 1

[0001]
[0101]
[1011]
[1111]
Signed integer encodings

• Sign magnitude
 – Most natural/intuitive but hardest to implement

• Ones’ complement
 – Cleaner arithmetic but less intuitive

• Two’s complement
 – Cleanest arithmetic but most complicated
 – Most modern signed integer types use this!
Sign magnitude

- Sign magnitude
 - Interpret most-significant bit as a sign bit
 - Interpret remaining bits as unsigned number x (the magnitude)
 - If negative, absolute value is x
 - To negate: flip the sign bit
- Disadvantages:
 - Two zeros: -0 and +0 [1000 and 0000]
 - Less useful for arithmetic because the sign bit has no relationship with the magnitude--cannot use unsigned arithmetic logic!

<table>
<thead>
<tr>
<th>Bit Pattern</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 011</td>
<td>3</td>
</tr>
<tr>
<td>1 011</td>
<td>-3</td>
</tr>
<tr>
<td>0 111</td>
<td>7</td>
</tr>
<tr>
<td>1 011 (7)</td>
<td>-3</td>
</tr>
<tr>
<td>0 1010</td>
<td></td>
</tr>
</tbody>
</table>
What is the negation of 10110 in sign magnitude?

- A) 10110
- B) 10111
- C) 01001
- D) 01011
- E) 01010
- F) 00110
Question

Which of the following are negative numbers if interpreted as a sign magnitude integer?

- A) 10110
- B) 10111
- C) 01001
- D) 01011
- E) 01010
- F) 00110
Ones’ complement

- Interpret most-significant bit as a **sign bit**
- Interpret ALL bits as unsigned integer \(x \)
 - If negative, absolute value is \([1111\ldots1] - x\)
- To negate: **flip all the bits** (binary NOT)
- Disadvantages:
 - Still have two representations of zero (1111 and 0000)
 - Also, less useful for arithmetic than two’s complement
 - Must “end-around carry” to preserve results

\[
\begin{align*}
 0 & 011 = 3 \\
 1 & 100 = -3 \\
 0 & 111 = 7 \\
 1 & 111 \text{ (7)} \\
 1 & 100 \text{ (-3)} \\
 \underline{+1} \text{ (end-around carry)} \\
 0 & 100
\end{align*}
\]
Question

What is the negation of 10110 in ones’ complement?

- A) 10110
- B) 10111
- C) 01001
- D) 01011
- E) 01010
- F) 00110
Which of the following are negative numbers if interpreted as a ones’ complement integer?

- A) 10110
- B) 10111
- C) 01001
- D) 01011
- E) 01010
- F) 00110
Two’s complement

- Interpret most-significant bit as a sign bit
- Interpret ALL bits as unsigned integer x
 - If negative, absolute value is $2^N - x$ where N is the number of bits
- To negate: subtract value from 2^N where N is the number of bits
- One zero; positive numbers wrap to negative ones halfway through

<table>
<thead>
<tr>
<th>2's Comp.</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1111</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>-7</td>
<td>1001</td>
</tr>
<tr>
<td>-8</td>
<td>1000</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
</tr>
</tbody>
</table>
Two’s complement advantage: uses unsigned arithmetic logic
- (ignore carries out of the sign bit for now)

- Ex: $5 - 3 = 5 + (-3) = 0101 + 1101 = 0010 (2)$
- Ex: $1 - 3 = 1 + (-3) = 0001 + 1101 = 1110 (-2)$
- Ex: $-2 - 3 = (-2) + (-3) = 1110 + 1101 = 1011 (-5)$

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
</tr>
</tbody>
</table>
Two’s complement

- Alternate interpretation: value of most significant bit is negated
 - i.e., start at most negative number and build back up towards zero

Figure 2.12
Unsigned number examples for $w = 4$.
When bit i in the binary representation has value 1, it contributes 2^i to the value.

Figure 2.16
Comparing unsigned and two’s-complement representations for $w = 4$.
The weight of the most significant bit is -8 for two’s complement and $+8$ for unsigned, yielding a net difference of 16.
Two’s complement trick

- Alternate way to negate in two’s complement
 - **Flip the bits** (binary NOT) then **add one**

Ex: $5 = 0101 \rightarrow \text{(binary NOT)} \rightarrow 1010 \rightarrow \text{(add one)} \rightarrow 1011 = -5 \ (-8 + 2 + 1)$

Aside: Why does this work? The sum of a number x and $\sim x$ is all ones (or 2^N-1 where N is the number of bits), so $\sim x$ can be expressed as $2^N-1 - x$. Because negating x in two’s complement is equivalent to subtracting x from 2^N, if we add one to $\sim x$ the results are equal:

$\sim x + 1 = (2^N-1 - x) + 1 = 2^N - x$
Question

What is the negation of 10110 in two’s complement?

- A) 10110
- B) 10111
- C) 01001
- D) 01011
- E) 01010
- F) 00110
Question

Which of the following are negative numbers if interpreted as a two’s complement integer?

- A) 10110
- B) 10111
- C) 01001
- D) 01011
- E) 01010
- F) 00110
Ones’ vs. Two’s

- **Ones’ complement**
 - Interpret all bits as unsigned integer x
 - Value is $[11111...1] - x$
 - I.e., the complement with respect to ones

- **Two’s complement**
 - Interpret all bits as unsigned integer x
 - Value is $2^N - x$ where N is the number of bits
 - I.e., the complement with respect to a power of two
Caution: language technicalities

- Ones’ complement and two’s complement are both an operation and an encoding
 - E.g., “perform two’s complement” vs “the number is stored in two’s complement”
- The operation represents the action necessary to negate a number in that encoding.
 - E.g., performing two’s complement (ones’ complement and add one) negates a number in two’s complement encoding
- If you have a value in a particular encoding:
 - If the sign bit is not set, it’s a positive number
 - If it is set, perform the operation to recover the positive value

We will avoid using the operation terminology in this course!
Integer encodings

- Information = Bits + Context
 - What does “1011” mean? It depends!

Unsigned: 11
Sign magnitude: -3
Ones' complement: -4
Two's complement: -5
Comparison

- We’ll see one more signed integer encoding next week: “offset binary” / “biased” / “excess”
 - For now, here’s a comparison (for 1-byte integers):

<table>
<thead>
<tr>
<th>Binary</th>
<th>Unsigned</th>
<th>Sign Mag</th>
<th>Ones’ C</th>
<th>Two’s C</th>
<th>Offset -127</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111 1111</td>
<td>255</td>
<td>-127</td>
<td>-0</td>
<td>-1</td>
<td>128</td>
</tr>
<tr>
<td>1111 1110</td>
<td>254</td>
<td>-126</td>
<td>-1</td>
<td>-2</td>
<td>127</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1000 0001</td>
<td>129</td>
<td>-1</td>
<td>-126</td>
<td>-127</td>
<td>2</td>
</tr>
<tr>
<td>1000 0000</td>
<td>128</td>
<td>-0</td>
<td>-127</td>
<td>-128</td>
<td>1</td>
</tr>
<tr>
<td>0111 1111</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>127</td>
<td>0</td>
</tr>
<tr>
<td>0111 1110</td>
<td>126</td>
<td>126</td>
<td>126</td>
<td>126</td>
<td>-1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0000 0001</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-126</td>
</tr>
<tr>
<td>0000 0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-127</td>
</tr>
</tbody>
</table>
Question

Which of the following are guaranteed to be “safe” (i.e., the value will always be preserved)?

- A) Smaller unsigned → larger unsigned
- B) Smaller two’s comp. → larger two’s comp.
- C) Larger → smaller (unsigned or two’s comp.)
- D) Unsigned → two’s comp.
- E) Two’s comp. → unsigned
Conversions

- Smaller unsigned → larger unsigned
 - Safe; zero-extend to preserve value

- Smaller two’s comp. → larger two’s comp.
 - Safe; sign-extend to preserve value

- Larger → smaller (unsigned or two’s comp.)
 - Overflow if new type isn’t large enough to fit (truncate)

- Unsigned → two’s comp.
 - Overflow if first bit is non-zero (otherwise, no change)

- Two’s comp. → unsigned
 - Overflow if value is negative (otherwise, no change)