CS 261
Fall 2020

Mike Lam, Professor

Binary Information

3735928559
(convert to hex!)
Binary information

• Topics
 – Base conversions (bin/dec/hex)
 – Data sizes
 – Byte ordering
 – Character and program encodings
 – Bitwise operations
Core theme

What does this mean?

IOO
Information = Bits + Context
Why binary?

• Computers store information in binary encodings
 – 1 bit is the simplest form of information (on / off)
 – Minimizes storage and transmission errors
• To store more complicated information, use more bits
 – However, we need context to understand them
 – Data encodings provide context
 – For the next two weeks, we will study encodings
 – First, let’s become comfortable working with binary
Base conversions

- **Binary encoding** is base-2: bit i represents the value 2^i

 Bits typically written from most to least significant (i.e., $2^3 2^2 2^1 2^0$)

 $1 = 1 = 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = [0001]$

 $5 = 4 + 1 = 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = [0101]$

 $11 = 8 + 2 + 1 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = [1011]$

 $15 = 8 + 4 + 2 + 1 = 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = [1111]$

Binary to decimal:
Add up all the powers of two (memorize powers of two to make this go faster!)

Decimal to binary:
Find highest power of two and subtract to find the remainder
Repeat above until the remainder is zero
Every power of two become 1; all other bits are 0
Remainder system

- Quick method for decimal → binary conversions
 - Repeatedly divide decimal number by two until zero, keeping track of remainders (either 0 or 1)
 - Read in reverse to get binary equivalent

\[
\begin{array}{c|c|c}
11 & 1 & 1 \\
5 & r & 1 \\
2 & r & 1 \\
1 & r & 0 \\
0 & r & 1 \\
\end{array}
\]

\[=> 1011 \quad (8 + 2 + 1)\]
What is the decimal number 25 when represented in binary?

\[
\begin{align*}
25 & \quad 12 \text{ r } 1 \\
6 & \quad \text{ r } 0 \\
3 & \quad \text{ r } 0 \\
1 & \quad \text{ r } 1 \\
0 & \quad \text{ r } 1
\end{align*}
\]

\[
11001 = (16 + 8 + 1)
\]
Hexadecimal encoding is base-16 (usually prefixed with “0x”)

- Converting between hex and binary is easy
 - Each digit represents 4 bits; just substitute digit-by-digit or in groups of four!
 - You should memorize (at least some of) these equivalences

<table>
<thead>
<tr>
<th>Dec</th>
<th>Bin</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dec</th>
<th>Bin</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>B</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>D</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>E</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>F</td>
</tr>
</tbody>
</table>
Base conversions

Examples:
- \(0x4CA \ <=> \ 0100 \ 1100 \ 1010\)
- \(0x5F0 \ <=> \ 0101 \ 1111 \ 0000\)

<table>
<thead>
<tr>
<th>Dec</th>
<th>Bin</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dec</th>
<th>Bin</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>B</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>D</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>E</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>F</td>
</tr>
</tbody>
</table>
Fundamental data sizes

- **1 byte** = 2 hex digits (= 2 *nibbles*)! = **8 bits**

 \[
 \begin{array}{c|c|c|c|c}
 \text{1 byte:} & 2^7 & 2^6 & 2^5 & 2^4 \\
 & 128 & 64 & 32 & 16 \\
 \end{array}
 \quad \begin{array}{c|c|c|c|c}
 \text{Value of byte 0xYZ} & 2^3 & 2^2 & 2^1 & 2^0 \\
 & 8 & 4 & 2 & 1 \\
 \end{array}
 \]

 Value of byte 0xYZ is 16 \cdot Y + Z

- **Machine word** = size of an address
 - (i.e., the size of a pointer in C)
 - Early computers used 16-bit addresses
 - Could address \(2^{16}\) bytes = 64 KB
 - Now 32-bit (4 bytes) or 64-bit (8 bytes)
 - Can address 4GB or 16 EB

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Bin</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilo</td>
<td>(2^{10})</td>
<td>(\sim 10^3)</td>
</tr>
<tr>
<td>Mega</td>
<td>(2^{20})</td>
<td>(\sim 10^6)</td>
</tr>
<tr>
<td>Giga</td>
<td>(2^{30})</td>
<td>(\sim 10^9)</td>
</tr>
<tr>
<td>Tera</td>
<td>(2^{40})</td>
<td>(\sim 10^{12})</td>
</tr>
<tr>
<td>Peta</td>
<td>(2^{50})</td>
<td>(\sim 10^{15})</td>
</tr>
<tr>
<td>Exa</td>
<td>(2^{60})</td>
<td>(\sim 10^{18})</td>
</tr>
</tbody>
</table>
 Byte ordering

• **Big endian**: store higher place values at lower addresses
 - Most-significant byte (MSB) to least-significant byte (LSB)
 - Similar to standard way to write hex (implied with “0x” prefix)
• **Little endian**: store lower place values at lower addresses
 - Least-significant byte (LSB) to most-significant byte (MSB)
 - Default byte ordering on most Intel-based machines

<table>
<thead>
<tr>
<th>low addr</th>
<th>high addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x11223344 in big endian:</td>
<td>11 22 33 44</td>
</tr>
<tr>
<td>0x11223344 in little endian:</td>
<td>44 33 22 11</td>
</tr>
</tbody>
</table>
• **Big endian**: most significant byte first (MSB to LSB)
• **Little endian**: least significant byte first (LSB to MSB)

<table>
<thead>
<tr>
<th>low</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x11223344 in big endian:</td>
<td>11 22 33 44</td>
</tr>
<tr>
<td>0x11223344 in little endian:</td>
<td>44 33 22 11</td>
</tr>
</tbody>
</table>

Decimal: 1
16-bit big endian: 00000000 00000001 (hex: 00 01)
16-bit little endian: 00000001 00000000 (hex: 01 00)

Decimal: 19 (16+2+1)
16-bit big endian: 00000000 00010011 (hex: 00 13)
16-bit little endian: 00010011 00000000 (hex: 13 00)

Decimal: 256
16-bit big endian: 00000001 00000000 (hex: 01 00)
16-bit little endian: 00000000 00000001 (hex: 00 01)
What is the byte in the highest address when hexadecimal number 0x8345 is stored in little-endian ordering?

- A) 0x83
- B) 0x45
- C) 0x34
- D) 0x85
- E) There is not enough information to tell.
Character encodings

- **ASCII** ("American Standard Code for Information Interchange")
 - 1-byte code developed in 1960s
 - Limited support for non-English characters

- **Unicode**
 - Multi-byte code developed in 1990s
 - "All the characters for all the writing systems of the world"
 - Over 136,000 characters in latest standard
 - **Fixed-width** (UTF-16 and UTF-32) and **variable-width** (UTF-8)

<table>
<thead>
<tr>
<th>Number of bytes</th>
<th>Bits for code point</th>
<th>First code point</th>
<th>Last code point</th>
<th>Byte 1</th>
<th>Byte 2</th>
<th>Byte 3</th>
<th>Byte 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>U+0000</td>
<td>U+007F</td>
<td>0xxxxxx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>U+0080</td>
<td>U+07FF</td>
<td>110xxxxx</td>
<td>10xxxxxx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>U+0800</td>
<td>U+FFFF</td>
<td>1110xxxx</td>
<td>10xxxxxx</td>
<td>10xxxxxx</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>U+10000</td>
<td>U+10FFFF</td>
<td>11110xxx</td>
<td>10xxxxxx</td>
<td>10xxxxxx</td>
<td>10xxxxxx</td>
</tr>
</tbody>
</table>
Program encodings

- **Machine code**
 - Binary encoding of *opcodes* and operands
 - Specific to a particular CPU architecture (e.g., x86_64)

```c
int add (int num1, int num2)
{
    return num1 + num2;
}
```

```
0000000000400606 <add>:
  400606:  55  push %rbp
  400607:  48 89 e5  mov %rsp,%rbp
  40060a:  89 7d fc  mov %edi,-0x4(%rbp)
  40060d:  89 75 f8  mov %esi,-0x8(%rbp)
  400610:  8b 55 fc  mov -0x4(%rbp),%edx
  400613:  8b 45 f8  mov -0x8(%rbp),%eax
  400616:  01 d0  add %edx,%eax
  400618:  5d  pop %rbp
  400619:  c3  retq
```
Bitwise operations

- Basic bitwise operations

 & (and) | (or) ^ (xor)

- Not boolean algebra!

 && (and) || (or) ! (not)

 θ (false) non-zero (true)

- Important properties:

 \[
 \begin{align*}
 x \& \ 0 &= 0 \\
 x \& \ 1 &= x \\
 x \ | \ 0 &= x \\
 x \ | \ 1 &= 1 \\
 x \ ^ \ 0 &= x \\
 x \ ^ \ 1 &= \sim x \\
 x \ ^ \ x &= 0
 \end{align*}
 \]

- Commutative:

 \[
 \begin{align*}
 x \& \ y &= y \& \ x \\
 x \ | \ y &= y \ | \ x \\
 x \ ^ \ y &= y \ ^ \ x
 \end{align*}
 \]

- Associative:

 \[
 \begin{align*}
 (x \& \ y) \& \ z &= x \& (y \& \ z) \\
 (x \ | \ y) \ | \ z &= x \ | (y \ | \ z) \\
 (x \ ^ \ y) \ ^ \ z &= x \ ^ \ (y \ ^ \ z)
 \end{align*}
 \]

- Distributive:

 \[
 \begin{align*}
 x \& \ (y \ | \ z) &= (x \& \ y) \ | \ (x \& \ z) \\
 x \ | \ (y \& \ z) &= (x \ | \ y) \ & \ (x \ | \ z)
 \end{align*}
 \]
Bitwise operations

• Bitwise complement (~) - “flip the bits”
 - ~0000 = 1111 (~0 = 1) ~1010 = 0101 (~0xA = 0x5)

• Left shift (<<) and right shift (>>)
 - Equivalent to multiplying (<<) or dividing (>>) by two
 - Left shift: 0110 << 1 = 1100 1 << 3 = 8
 - Logical right shift (fill zeroes): 1100 >> 2 = 0011
 - Arithmetic right shift (fill most sig. bit): 1100 >> 2 = 1111
 (but only if unsigned) 0100 >> 2 = 0001

On stu:
 int: 0f000000 >> 8 = 0000f000 (arithmetic)
 int: ff000000 >> 8 = ffff0000
 uint: 0f000000 >> 8 = 0000f000 (logical)
 uint: ff000000 >> 8 = 00ff0000
Masking

- Bitwise operations can extract parts of a binary value
 - This is referred to as masking; specify a bit pattern mask to indicate which bits you want
 - Helpful fact: 0xF is all 1’s in binary!
 - Use a bitwise AND (&) with the mask to extract the bits
 - Use a bitwise complement (~) to invert a mask
 - Example: To extract the lower-order 16 bits of a larger value \(v \), use “\(v \ & \ 0xFFFF \)”

\[
\begin{align*}
0xDEADBEEF \ & \ 0xFFFF & = & \ 0x0000BEEF & = & \ 0xBEEF \\
0xDEADBEEF \ & \ 0x0000FFFF & = & \ 0x0000BEEF & = & \ 0xBEEF \\
0xDEADBEEF \ & \ 0xFFFF0000 & = & \ 0xDEAD0000 & & \\
0xDEADBEEF \ & \ ~0xFFFF & = & \ 0xDEAD0000 & & \\
0xDEADBEEF \ & \ ~0x0000FFFF & = & \ 0xDEAD0000 & & \\
\end{align*}
\]