

CS 261
Fall 2019

Mike Lam, Professor

Virtual Memory and

Operating Systems

Disk

RAM

Another
process's
memory

Virtual memory
(per process)

Physical
memory

Topics

● Operating systems
● Address spaces
● Virtual memory
● Address translation
● Memory allocation

Lingering questions

● What happens when you call malloc()?
– How exactly is memory allocated?

● What is the correspondence between addresses in machine
code and physical memory cells?
– Are Y86 operand addresses used by the hardware?

● There’s a gap here ...
– In early machines, there was no gap; the machine ran one

program at a time and every program had complete control of the
machine – there was no need for malloc()

– Modern machines support multi-tasking, so this is not sufficient
– What we need is some kind of system software to mediate

between user programs and the hardware

Operating systems

● An operating system (OS) is systems software that
provides essential / fundamental system services
– Manages initialization (booting) and cleanup (shutdown)
– Manages hardware/software interactions (I/O)
– Manages running programs (scheduling)
– Manages memory (virtual memory)
– Manages data (file systems)
– Manages external devices (drivers & interrupts)
– Manages communication (networking)
– Manages security (permissions)

Kernel

● The OS kernel is the core piece of software that has
complete control over the system
– Direct access to all hardware (“kernel mode”)

● All other software runs in user mode

– Design philosophies: monolithic kernels vs. microkernels
● Classic debate: Tanenbaum vs. Torvalds

– Often designed to be small but extensible
● Plugins are called drivers

– Technically, “Linux” is a kernel
● The operating system is “GNU/Linux”
● Combination of Linux kernel and GNU userspace utilities

gnu

Tux

OS abstractions

● The OS provides many useful abstractions so that
programs don’t need to handle hardware details
– CS 450 covers operating systems in detail

● In this class:
– Virtual memory: logical view of memory hierarchy
– Process: logical view of a program running on a CPU
– Thread: logical flow of execution in a program
– File: logical view of data on a disk

Virtual memory

● Kernel translates between virtual and physical addresses
● Goals:

– Use main memory as a cache for disks
– Provide every process with a uniform view of memory
– Protect processes from interference

No virtual memory With virtual memory

Address spaces

● An address space is an ordered set of non-negative
integer addresses
– Ex: { 0, 1, 2, 3, … , 499, 500 }
– Linear address spaces don’t skip any addresses
– Two address spaces: virtual and physical
– Every byte has two addresses (virtual and physical)

Example: Y86 programs have a virtual address space
with addresses that range from 0x0 to 0x1000, which is

large enough to store 4K bytes

Virtual memory

● Fixed-sized memory partitioning
– Virtual address space into virtual pages
– Physical address space into physical pages (or frames)
– Pages are usually relatively large (4 KB to 2 MB)

● Virtual memory uses RAM as a cache for pages
– Process uses consistent virtual / logical addresses
– OS translates these to physical addresses as necessary

● Use a table for fast lookups!

– We will assume hardware handles L1, L2, & L3 SRAM caches

Page tables

● Page table: OS data structure for page lookups (array of page table entries)
● DRAM cache misses (called page faults) are very expensive

– Disks are MUCH slower than DRAM
– Transferring pages back and forth is called paging or swapping

before page fault on VP 3 after page fault on VP 3

Address translation

● n-bit virtual address space => m-bit physical address space
● p-bit page offsets (page size is 2p)

Address translation

● Memory management unit (MMU)
– On-chip CPU component for address translation
– Goal: perform translation as quickly as possible

Page hit Page miss

Address translation

● Translation lookaside buffer (TLB)
– Small cache of page table entries (PTEs) in MMUs
– Provides faster address translations (in most cases)
– It’s caches all the way down …

Page hit Page miss

Virtual memory caveats

● Virtual memory works well if a program has good locality
– Especially temporal locality
– This is a compelling reason to design for good locality

● Virtual memory works well if a program has a working set
that fits in main memory
– If this is not true, the system may need to continuously swap

pages in and out
– This is called thrashing, and is a significant cause of poor

program performance
– Can be detected by profilers (via counting page faults)

Memory management

● Operating system provides memory allocation service
– mmap system call (malloc uses this)

– Creates virtual memory allocation
– Private regions: changes are only seen by owner

● Private, variable-sized region called the heap

– Shared regions: changes are seen by all processes
● Usually between heap and stack
● Multiple virtual addresses map to the same physical address
● Changes are seen by all processes
● Usually a read-only region for shared library code

Process address spaces

Typical Linux
process address
space

Kernel uses higher
addresses

Process address spaces

● OSes maintain a separate page table for every process
– Provides program linking consistency

● E.g., code always begins at 0x400000

– Simplifies efficient loading
● Don’t actually load data from disk until needed (more efficient than P2!)

– Streamlines library sharing
● Keep one physical copy with multiple virtual mappings

– Simplifies memory allocation
● malloc() doesn’t need to find contiguous physical memory

– Improves security
● Processes can’t see/edit each others’ address spaces

Our final module

● For the rest of the semester, we will continue
discussing operating systems principles
– Layers of abstraction that simplify development
– Theme: systems software is a foundation
– If you like this material, plan on taking CS 450

Virtual address translation

TLB cache

L1 data cache

Address translation w/ L1 cache
Look up virtual page number in
TLB using TLB index and tag

TLB hit?

Look up virtual page
number in page table(s)

page table hit?

page fault!

OS loads page & assigns
physical page number

Get physical page
number

Look up physical address in L1
cache using cache index and tag

cache hit?

Load line
into cache Load data

from cache

no yes

no

yes

no yes

Address translation w/ L1 cache

1) Convert hex virtual address to binary representation
– Fill in virtual address bits from RIGHT TO LEFT (extra is zeros on left)

2) Extract page number (VPN) and page offset (VPO) from virtual address

3) Extract TLB index and TLB tag from virtual address

4) In TLB, look up TLB index and tag to find PPN
– If not valid: TLB miss!

5) If not in TLB look up VPN in page table to find PPN
– If not in page table: page fault!

6) Assemble physical address from page number (PPN) and page offset (PPO)
– Physical page offset (PPO) is the same as the virtual page offset (VPO)

7) Extract cache index and cache tag from physical address

8) In cache, look up cache index and tag
– If not found, cache miss!

– If found, return data

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

