

CS 261
Fall 2019

Mike Lam, Professor

x86-64 Procedures

void foo()
{
 int a,b;
 bar(a)
 return;
}

foo return IP

saved BP (main)

foo local a

foo local b

bar param x (foo a)

bar return IP

saved BP (foo)

bar local c

baz param y (bar c)

baz param x (bar x)

main return IP

saved BP (bar)

baz local d

...

stack
growth

main
frame

foo
frame

bar
frame

void bar(x)
{
 int c;
 baz(x,c);
 return;
}

void baz(x,y)
{
 int d;
 return;
}

baz
BP

bar
BP

foo
BP

baz
frame

higher
addresses

Topics

● Procedure calls
– Runtime stack
– Control transfer
– Data transfer
– Local storage
– Recursive procedures
– Security issues

Procedure calls

● A procedure is a portion of code packaged for re-use
– Key abstraction in software development
– Provide modularity and encapsulation
– Many alternative names: functions, methods, subroutines

● Well-designed procedures have:
– Well-documented, typed arguments and return value(s)
– Clear impact on program state (or no impact)

● Also known as “side effects”

ABI

● Application Binary Interface (ABI)
– Interface between program & system at the binary level
– Includes rules about how procedure calls are implemented
– These rules are referred to as calling conventions
– We will study the standard x86-64 calling conventions

● Calling conventions specify:
– Control transfer
– Data transfer
– Local storage

Runtime stack

● Basic idea: maintain a system
stack frame for each function call
– All active functions have a frame
– Each frame stores information

about a single active call
● Arguments, local variables, return

address

– GDB's "backtrace" command
follows the chain up

– Recursion just works!

stack

Here function P has called function Q

Control transfer

● Use stack to store return addresses
– Return address: the instruction AFTER the call

– call / callq pushes 64-bit return address onto stack

– ret / retq pops the return address and sets %rip

400550 <main>:
 ...
 400563 callq 400540 <foo>
 400568 movq 0x8(%rsp), %rdx
 ...

400550 <foo>:
 400540 xorq %rax, %rax
 ...
 40054d retq

Data transfer

● In x86-64, up to six integral (integer or pointer)
arguments are passed to a procedure via registers:
– %rdi, %rsi, %rdx, %rcx, %r8, %r9

– Other arguments are passed on the stack (and pushed in
reverse order)

● A single return value is passed back via %rax
– Large structs often returned via added pointer argument

Local storage (registers)

● Some registers are designated callee-saved
– In x86-64: %rbx, %rbp, %r12, %r13, %r14, %r15

– A procedure must save/restore these registers (often using
push/pop) if they are used during the procedure

– When possible, avoid using these registers inside
procedures (lower overhead)

● Other registers (except %rsp) are caller-saved
– Caller must save them if they need to be preserved
– The stack pointer is a special case (used for communication)

Local storage (memory)

● Procedures can allocate space on the
stack for local variables
– Subtract # of bytes needed from %rsp

– Deallocate by restoring old %rsp value

● Variable-sized allocations require
special handling
– Use base / frame pointer (%rbp) to track

“anchor” for current frame
– Save previous base pointer on stack at

beginning of function
– Section 3.10.5 in textbook

Base pointers

● Use base pointer (%rbp) to track the
beginning of current frame
– Parameters at positive offsets
– Local values at negative offsets
– Chain of base pointers up the stack
– Push/pop BP like return address

Prologue:
 pushq %rbp
 movq %rsp, %rbp
 subq $n, %rsp
 ...

Epilogue:
 movq %rbp, %rsp
 popq %rbp
 retq

Pre-call:
 pushq <param2>
 pushq <param1>
 callq <func>

Post-return:
 subq $16, %rsp
 ...

CALLER CALLEE

void foo()
{
 int a,b;
 bar(a)
 return;
}

foo return IP

saved BP (main)

foo local a

foo local b

bar param x (foo a)

bar return IP

saved BP (foo)

bar local c

baz param y (bar c)

baz param x (bar x)

main return IP

saved BP (bar)

baz local d

...

stack
growth

main
frame

foo
frame

bar
frame

void bar(x)
{
 int c;
 baz(x,c);
 return;
}

void baz(x,y)
{
 int d;
 return;
}

baz
BP

bar
BP

foo
BP

baz
frame

higher
addresses

CS 430/432 preview

Buffer overflows

● Major x86-64 security issue
– C and assembly do not check for out-of-bounds array accesses
– x86-64 stores return addresses and data on the same stack
– Out-of-bound writes to local variables may overwrite other stack frames
– Allows attackers to change control flow just by providing the right "data"
– Many historical exploits (including Morris worm)

void echo ()
{

// other code
 // omitted

 char buf[8];
 gets(buf);
 printf(buf);
}

DO NOT WRITE
CODE LIKE THIS!

higher
addresses

Buffer overflows

● Shellcode (exploit code)
– Pre-compiled snippets of code that exploit a buffer overflow

higher
addresses

char shellcode[] =
 "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
 "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
 "\x80\xe8\xdc\xff\xff\xff/bin/sh";

Complication: Must
pad the shellcode with
address of the buffer
(guess and/or use a
NOP-sled)

Mitigating buffer overflows

● Stack randomization
– Randomize starting location of stack
– Makes it more difficult to guess buffer address
– In Linux: address-space layout randomization

● Corruption detection
– Insert a canary (guard value) on stack after each array
– Check canary before returning from function

● Read-only code regions
– Mark stack memory as "no-execute"
– Hinders just-in-time compilation and instrumentation

Exercise

● Trace the following code--what is the value of %rax at the end?
– Initial values: %rsp = 0x7fffffffe488, %rip = 0x4004e8

4004d6 <leaf>:
 4004d6: 48 8d 7f 0f leaq 0xf(%rdi),%rdi
 4004da: c3 retq

4004db <top>:
 4004db: 48 83 ef 05 subq $0x5,%rdi
 4004df: e8 f2 ff ff ff callq 4004d6
 4004e4: 48 01 ff addq %rdi,%rdi
 4004e7: c3 retq

4004e8 <main>:
 4004e8: 48 c7 c7 64 00 00 00 movq $100,%rdi
 4004ef: e8 e7 ff ff ff callq 4004db
 4004f4: 48 89 f8 movq %rdi,%rax
 4004f7: c3 retq

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

