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Floating-point

● Topics
– Binary fractions
– Floating-point representation
– Conversions and rounding error



  

Binary fractions

● Now we can store integers
– But what about general real numbers?

● Extend positional binary integers to store fractions
– Designate a certain number of bits for the fractional part
– These bits represent negative powers of two
– (Just like fractional digits in decimal fractions!)

101.101
 4       2       1          1/2    1/4    1/8

4 + 1 + 0.5 + 0.125 = 5.625 (alternatively: 5 + 5/8)



  

Another problem

● For scientific applications, we want to be able to 
store a wide range of values
– From the scale of galaxies down to the scale of atoms

● Doing this with fixed-precision numbers is difficult
– Even signed 64-bit integers

● Perhaps allocate half for whole number, half for fraction
● Range: ~2 x 10-9 through ~2 x 109

Floating-point demonstration using Super Mario 64:

https://www.youtube.com/watch?v=9hdFG2GcNuA

https://www.youtube.com/watch?v=9hdFG2GcNuA


  

Floating-point numbers

● Scientific notation to the rescue!
– Traditionally, we write large (or small) numbers as x ∙ 10e

– This is how floating-point representations work
● Store exponent and fractional parts (the significand) separately
● The decimal point “floats” on the number line
● Position of point is based on the exponent

         0.0123 x 102 
         0.123 x 101

1.23  =  1.23 x 100 
        12.3 x 10-1 
       123.0 x 10-2



  

Floating-point numbers

● However, computers use binary
– So floating-point numbers use base 2 scientific notation (x ∙ 2e)

● Fixed width field
– Reserve one bit for the sign bit (0 is positive, 1 is negative)
– Reserve n bits for biased exponent (bias is 2n-1 - 1)

● Avoids having to use two’s complement

– Use remaining bits for normalized fraction (implicit leading 1)
● Exception: if the exponent is zero, don’t normalize

2.5  →   0 1000 010
Sign (+)

Exponent (8 - 7 = 1)

Significand: (1).01 = 2.5

Value = (-1)s x 1.f x 2E



  

Aside: Offset binary

● Alternative to two’s complement
– Actual value is stored value minus a constant K (in FP: 2n-1 - 1)
– Also called biased or excess representation
– Ordering of actual values is more natural

Binary     Unsigned Two’s C Offset-127

0000 0000 0  0 -127
0000 0001 1  1 -126
… … … …
0111 1110 126  126 -1
0111 1111 127  127  0
1000 0000 128 -128  1
1000 0001 129 -127  2
… … … …
1111 1110 254 -2  127
1111 1111 255 -1  128

Example range 
(int8_t):



  

Floating-point numbers

Not evenly spaced! (as integers are)

Consider these examples:

1.00000 x 20 → 1.00001 x 20

1.00000 x 2100 →  1.00001 x 2100

Adding a least-significant digit adds 
more value with a higher exponent 

than with a lower exponent



  

Floating-point numbers

Representable values for 6-bit floating-point format. There are k = 3 exponent bits 
and n = 2 fraction bits. The bias is 3.



  

“denormal” 
numbers provide 
gradual underflow
near zero

values < 1

values > 1

what about values higher than this one?



  

NaNs

● NaN = “Not a Number”
– Result of 0/0 and other undefined operations
– Propagate to later calculations
– Quiet and signaling variants (qNaN and sNaN)
– Allowed a neat trick during my dissertation research:



  

Floating-point numbers



  

Floating-point issues

● Rounding error is the value lost during conversion to a finite significand
– Machine epsilon gives an upper bound on the rounding error

● (Multiply by value being rounded)

– Can compound over successive operations

● Lack of associativity caused by intermediate rounding
– Prevents some compiler optimizations

● Cancellation is the loss of significant digits during subtraction
– Can magnify error and impact later operations

    double a = 100000000000000000000.0;
    double b = -a;
    double c = 3.14;
    if (((a + b) + c) == (a + (b + c))) {
        printf ("Equal!\n");
    } else {
        printf ("Not equal!\n");
    }



  

Floating-point issues

● Many numbers cannot be represented exactly, regardless 
of how many bits are used!
– E.g., 0.110 → 0.000110011001100110011002 …

● This is no different than in base 10
– E.g., 1/3 = 0.333333333 …

● If the number can be expressed as a sum of negative 
powers of the base, it can be represented exactly
– Assuming enough bits are present



  

Floating-point standards

Name                 Bits   Exp    Sig     Dec      M_Eps

bfloat16               16     8      7+1     2.408   7.81e-03

IEEE half              16     5     10+1     3.311   9.77e-04

IEEE single            32     8     23+1     7.225   1.19e-07

IEEE double            64    11     52+1    15.955   2.22e-16

IEEE quad             128    15    112+1    34.016   1.93e-34

NOTES:

  - Sig is <explicit>[+<implicit>] bits

  - Dec = log10(2Sig)

  - M_Eps (machine epsilon) = b(-(p-1)) = b(1-p)

       (upper bound on relative error when rounding to 1)



  

Floating-point standards



  

Conversion and rounding

Int32 Int64 Float Double

Int32 - - R -

Int64 O - R R

Float OR OR - -

Double OR OR OR -

To:

From:

O = overflow possible
R = rounding possible

“-” is safe



  

Rounding

Round-to-even: round to nearest, on ties favor even numbers to avoid statistical biases

In binary, to round to bit i, examine bit i+1:
    - If 0, round down
    - If 1 and any of the bits following are 1, round up
    - Otherwise, round up if bit i is 1 and down if bit i is 0

10.00011 → 10.00  (down)
10.00100 → 10.00  (tie, round down)
10.10100 → 10.10  (tie, round down)
10.01100 → 10.10  (tie, round up)
10.11100 → 11.00  (tie, round up)
10.00110 → 10.01  (up)



  

Floating-point issues

● Single vs. double precision choice
– Theme: system design involves tradeoffs
– Single precision arithmetic is faster

● Especially on GPUs (vectorization & bandwidth)

– Double precision is more accurate
● More than twice as accurate!

– Which do we use?
● And how do we justify our choice?
● Does the answer change for different regions of a program?
● Does the answer change for different periods during execution?
● This is an open research question (talk to me if you’re interested!)



  

Manual conversions

● To fully understand how floating-point works, it helps to do 
some conversions manually
– This is unfortunately a bit tedious and very error-prone
– There are some general guidelines that can help it go faster
– You will also get faster with practice
– Use the fp.c utility (posted on the resources page) to generate 

practice problems and test yourself!
● Compile: gcc -o fp fp.c -lm
● Run: ./fp <exp_len> <sig_len>
● It will generate all positive floating-point numbers using that representation
● Choose one and convert the binary to decimal or vice versa

...
0 1011 000       58    normal:  sign=0  e=11  bias=7  E=4  2^E=16  f=0/8  M=8/8  2^E*M=128/8  val=16.000000
0 1011 001       59    normal:  sign=0  e=11  bias=7  E=4  2^E=16  f=1/8  M=9/8  2^E*M=144/8  val=18.000000
0 1011 010       5a    normal:  sign=0  e=11  bias=7  E=4  2^E=16  f=2/8  M=10/8  2^E*M=160/8  val=20.000000
0 1011 011       5b    normal:  sign=0  e=11  bias=7  E=4  2^E=16  f=3/8  M=11/8  2^E*M=176/8  val=22.000000
...



  

Textbook’s technique

If this technique works for you, great!
If not, here’s another perspective...



  

Converting floating-point numbers

● Floating-point → decimal:
– 1) Sign bit (s):

● Value is negative iff set

– 2) Exponent (exp):
● All zeroes: denormalized (E = 1-bias)
● All ones: NaN unless f is zero (which is infinity)  – DONE!
● Otherwise: normalized (E = exp-bias)

– 3) Significand (f):
● If normalized: M = 1 + f / 2m  (where m is the # of fraction bits)
● If denormalized: M = f / 2m  (where m is the # of fraction bits)

– 4) Value = (-1)s x M x 2E

Note:
  bias = 2n-1 -1

(where n is the
# of exp bits)



  

Converting floating-point numbers

● Decimal → floating-point (normalized only)
– 1) Convert to unsigned fractional binary format

● Set sign bit

– 2) Normalize to 1.xxxxxx
● Keep track of how many places you shift left (negative for shift right)
● The “xxxxxx” bit string is the significand (pad with zeros on the right)
● If there aren’t enough bits to store the entire fraction, the value is rounded

– 3) Encode resulting binary/shift offset (E) using bias representation
● Add bias and convert to unsigned binary
● If the exponent cannot be represented, result is zero or infinity

2.75 (dec) → 10.11 (bin) → 1.011 x 21 (bin) → 0 1000 011

Exp: 1 + 7 = 8Bias = 24-1 – 1 = 7

Example 
(4-bit exp, 
3-bit frac):

Note:
  bias = 2n-1 -1
(where n is the
# of exp bits)



  

Example (textbook pg. 119)

    1234510 → 110000001110012

                 → 1.10000001110012 x 213

   exp = 13 + 127 (bias) = 140 = 100011002

→ 0 10001100 10000001110010000000000

(note the shared bits that appear in all three representations)



  

Exercises

● What are the values of the following numbers, interpreted as 
floating-point numbers with a 3-bit exponent and 2-bit 
significand?
– What about a 2-bit exponent and a 3-bit significand?

● Convert the following values to a floating-point value with a 4-bit 
exponent and a 3-bit significand. Write your answers in hex.

001100         011001

-3       0.125     120    ∞
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