

CS 261
Fall 2019

Mike Lam, Professor

Floating-Point Numbers

https://xkcd.com/217/

Floating-point

● Topics
– Binary fractions
– Floating-point representation
– Conversions and rounding error

Binary fractions

● Now we can store integers
– But what about general real numbers?

● Extend positional binary integers to store fractions
– Designate a certain number of bits for the fractional part
– These bits represent negative powers of two
– (Just like fractional digits in decimal fractions!)

101.101
 4 2 1 1/2 1/4 1/8

4 + 1 + 0.5 + 0.125 = 5.625 (alternatively: 5 + 5/8)

Another problem

● For scientific applications, we want to be able to
store a wide range of values
– From the scale of galaxies down to the scale of atoms

● Doing this with fixed-precision numbers is difficult
– Even signed 64-bit integers

● Perhaps allocate half for whole number, half for fraction
● Range: ~2 x 10-9 through ~2 x 109

Floating-point demonstration using Super Mario 64:

https://www.youtube.com/watch?v=9hdFG2GcNuA

https://www.youtube.com/watch?v=9hdFG2GcNuA

Floating-point numbers

● Scientific notation to the rescue!
– Traditionally, we write large (or small) numbers as x ∙ 10e

– This is how floating-point representations work
● Store exponent and fractional parts (the significand) separately
● The decimal point “floats” on the number line
● Position of point is based on the exponent

 0.0123 x 102
 0.123 x 101

1.23 = 1.23 x 100
 12.3 x 10-1
 123.0 x 10-2

Floating-point numbers

● However, computers use binary
– So floating-point numbers use base 2 scientific notation (x ∙ 2e)

● Fixed width field
– Reserve one bit for the sign bit (0 is positive, 1 is negative)
– Reserve n bits for biased exponent (bias is 2n-1 - 1)

● Avoids having to use two’s complement

– Use remaining bits for normalized fraction (implicit leading 1)
● Exception: if the exponent is zero, don’t normalize

2.5 → 0 1000 010
Sign (+)

Exponent (8 - 7 = 1)

Significand: (1).01 = 2.5

Value = (-1)s x 1.f x 2E

Aside: Offset binary

● Alternative to two’s complement
– Actual value is stored value minus a constant K (in FP: 2n-1 - 1)
– Also called biased or excess representation
– Ordering of actual values is more natural

Binary Unsigned Two’s C Offset-127

0000 0000 0 0 -127
0000 0001 1 1 -126
… … … …
0111 1110 126 126 -1
0111 1111 127 127 0
1000 0000 128 -128 1
1000 0001 129 -127 2
… … … …
1111 1110 254 -2 127
1111 1111 255 -1 128

Example range
(int8_t):

Floating-point numbers

Not evenly spaced! (as integers are)

Consider these examples:

1.00000 x 20 → 1.00001 x 20

1.00000 x 2100 → 1.00001 x 2100

Adding a least-significant digit adds
more value with a higher exponent

than with a lower exponent

Floating-point numbers

Representable values for 6-bit floating-point format. There are k = 3 exponent bits
and n = 2 fraction bits. The bias is 3.

“denormal”
numbers provide
gradual underflow
near zero

values < 1

values > 1

what about values higher than this one?

NaNs

● NaN = “Not a Number”
– Result of 0/0 and other undefined operations
– Propagate to later calculations
– Quiet and signaling variants (qNaN and sNaN)
– Allowed a neat trick during my dissertation research:

Floating-point numbers

Floating-point issues

● Rounding error is the value lost during conversion to a finite significand
– Machine epsilon gives an upper bound on the rounding error

● (Multiply by value being rounded)

– Can compound over successive operations

● Lack of associativity caused by intermediate rounding
– Prevents some compiler optimizations

● Cancellation is the loss of significant digits during subtraction
– Can magnify error and impact later operations

 double a = 100000000000000000000.0;
 double b = -a;
 double c = 3.14;
 if (((a + b) + c) == (a + (b + c))) {
 printf ("Equal!\n");
 } else {
 printf ("Not equal!\n");
 }

Floating-point issues

● Many numbers cannot be represented exactly, regardless
of how many bits are used!
– E.g., 0.110 → 0.000110011001100110011002 …

● This is no different than in base 10
– E.g., 1/3 = 0.333333333 …

● If the number can be expressed as a sum of negative
powers of the base, it can be represented exactly
– Assuming enough bits are present

Floating-point standards

Name Bits Exp Sig Dec M_Eps

bfloat16 16 8 7+1 2.408 7.81e-03

IEEE half 16 5 10+1 3.311 9.77e-04

IEEE single 32 8 23+1 7.225 1.19e-07

IEEE double 64 11 52+1 15.955 2.22e-16

IEEE quad 128 15 112+1 34.016 1.93e-34

NOTES:

 - Sig is <explicit>[+<implicit>] bits

 - Dec = log10(2Sig)

 - M_Eps (machine epsilon) = b(-(p-1)) = b(1-p)

 (upper bound on relative error when rounding to 1)

Floating-point standards

Conversion and rounding

Int32 Int64 Float Double

Int32 - - R -

Int64 O - R R

Float OR OR - -

Double OR OR OR -

To:

From:

O = overflow possible
R = rounding possible

“-” is safe

Rounding

Round-to-even: round to nearest, on ties favor even numbers to avoid statistical biases

In binary, to round to bit i, examine bit i+1:
 - If 0, round down
 - If 1 and any of the bits following are 1, round up
 - Otherwise, round up if bit i is 1 and down if bit i is 0

10.00011 → 10.00 (down)
10.00100 → 10.00 (tie, round down)
10.10100 → 10.10 (tie, round down)
10.01100 → 10.10 (tie, round up)
10.11100 → 11.00 (tie, round up)
10.00110 → 10.01 (up)

Floating-point issues

● Single vs. double precision choice
– Theme: system design involves tradeoffs
– Single precision arithmetic is faster

● Especially on GPUs (vectorization & bandwidth)

– Double precision is more accurate
● More than twice as accurate!

– Which do we use?
● And how do we justify our choice?
● Does the answer change for different regions of a program?
● Does the answer change for different periods during execution?
● This is an open research question (talk to me if you’re interested!)

Manual conversions

● To fully understand how floating-point works, it helps to do
some conversions manually
– This is unfortunately a bit tedious and very error-prone
– There are some general guidelines that can help it go faster
– You will also get faster with practice
– Use the fp.c utility (posted on the resources page) to generate

practice problems and test yourself!
● Compile: gcc -o fp fp.c -lm
● Run: ./fp <exp_len> <sig_len>
● It will generate all positive floating-point numbers using that representation
● Choose one and convert the binary to decimal or vice versa

...
0 1011 000 58 normal: sign=0 e=11 bias=7 E=4 2^E=16 f=0/8 M=8/8 2^E*M=128/8 val=16.000000
0 1011 001 59 normal: sign=0 e=11 bias=7 E=4 2^E=16 f=1/8 M=9/8 2^E*M=144/8 val=18.000000
0 1011 010 5a normal: sign=0 e=11 bias=7 E=4 2^E=16 f=2/8 M=10/8 2^E*M=160/8 val=20.000000
0 1011 011 5b normal: sign=0 e=11 bias=7 E=4 2^E=16 f=3/8 M=11/8 2^E*M=176/8 val=22.000000
...

Textbook’s technique

If this technique works for you, great!
If not, here’s another perspective...

Converting floating-point numbers

● Floating-point → decimal:
– 1) Sign bit (s):

● Value is negative iff set

– 2) Exponent (exp):
● All zeroes: denormalized (E = 1-bias)
● All ones: NaN unless f is zero (which is infinity) – DONE!
● Otherwise: normalized (E = exp-bias)

– 3) Significand (f):
● If normalized: M = 1 + f / 2m (where m is the # of fraction bits)
● If denormalized: M = f / 2m (where m is the # of fraction bits)

– 4) Value = (-1)s x M x 2E

Note:
 bias = 2n-1 -1

(where n is the
of exp bits)

Converting floating-point numbers

● Decimal → floating-point (normalized only)
– 1) Convert to unsigned fractional binary format

● Set sign bit

– 2) Normalize to 1.xxxxxx
● Keep track of how many places you shift left (negative for shift right)
● The “xxxxxx” bit string is the significand (pad with zeros on the right)
● If there aren’t enough bits to store the entire fraction, the value is rounded

– 3) Encode resulting binary/shift offset (E) using bias representation
● Add bias and convert to unsigned binary
● If the exponent cannot be represented, result is zero or infinity

2.75 (dec) → 10.11 (bin) → 1.011 x 21 (bin) → 0 1000 011

Exp: 1 + 7 = 8Bias = 24-1 – 1 = 7

Example
(4-bit exp,
3-bit frac):

Note:
 bias = 2n-1 -1
(where n is the
of exp bits)

Example (textbook pg. 119)

 1234510 → 110000001110012

 → 1.10000001110012 x 213

 exp = 13 + 127 (bias) = 140 = 100011002

→ 0 10001100 10000001110010000000000

(note the shared bits that appear in all three representations)

Exercises

● What are the values of the following numbers, interpreted as
floating-point numbers with a 3-bit exponent and 2-bit
significand?
– What about a 2-bit exponent and a 3-bit significand?

● Convert the following values to a floating-point value with a 4-bit
exponent and a 3-bit significand. Write your answers in hex.

001100 011001

-3 0.125 120 ∞

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

