Binary Information

3735928559 (convert to hex)
Binary information

• Topics
 – Base conversions (bin/dec/hex)
 – Data sizes
 – Byte ordering
 – Character and program encodings
 – Bitwise operations
Core theme

What does this mean?

IOO
Core theme

Information = Bits + Context
Why binary?

- Computers store information in binary encodings
 - 1 bit is the simplest form of information (on / off)
 - Minimizes storage and transmission errors
- To store more complicated information, use more bits
 - However, we need context to understand them
 - Data encodings provide context
 - For the next two weeks, we will study encodings
 - First, let’s become comfortable working with binary
Base conversions

- **Binary encoding** is base-2: bit i represents the value 2^i
 - Bits typically written from most to least significant (i.e., $2^3 \ 2^2 \ 2^1 \ 2^0$)

1 = $1 = 0\cdot2^3 + 0\cdot2^2 + 0\cdot2^1 + 1\cdot2^0 = [0001]$ \quad 1-1=0

5 = 4 + 1 = $0\cdot2^3 + 1\cdot2^2 + 0\cdot2^1 + 1\cdot2^0 = [0101]$ \quad 5-4=1 \quad 1-1=0

11 = 8 + 2 + 1 = $1\cdot2^3 + 0\cdot2^2 + 1\cdot2^1 + 1\cdot2^0 = [1011]$ \quad 11-8=3 \quad 3-2=1 \quad 1-1=0

15 = 8 + 4 + 2 + 1 = $1\cdot2^3 + 1\cdot2^2 + 1\cdot2^1 + 1\cdot2^0 = [1111]$ \quad 15-8=7 \quad 7-4=3 \quad 3-2=1 \quad 1-1=0

Binary to decimal:
Add up all the powers of two (memorize powers of two to make this go faster!)

Decimal to binary:
Find highest power of two and subtract to find the remainder
Repeat above until the remainder is zero
Every power of two become 1; all other bits are 0
Remainder system

• Quick method for decimal → binary conversions
 - Repeatedly divide decimal number by two until zero, keeping track of remainders (either 0 or 1)
 - Read in reverse to get binary equivalent

\[\begin{align*}
11 & \rightarrow \ 1011 \\
5 & \ r \ 1 \\
2 & \ r \ 1 \\
1 & \ r \ 0 \\
0 & \ r \ 1
\end{align*}\]
Question

- What is the decimal number 25 when represented in binary?
Hexadecimal encoding is base-16 (often prefixed with “0x”)

- Converting between hex and binary is easy
 - Each digit represents 4 bits; just substitute digit-by-digit or in groups of four!
 - You should memorize these equivalences

<table>
<thead>
<tr>
<th>Dec</th>
<th>Bin</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dec</th>
<th>Bin</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>B</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>D</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>E</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>F</td>
</tr>
</tbody>
</table>
Lab Part 1

• Work on Lab Part 1
Fundamental data sizes

- 1 byte = 2 hex digits (= 2 nibbles!) = 8 bits

\[
\begin{array}{c|c|c|c}
2^7 & 2^6 & 2^5 & 2^4 \\
128 & 64 & 32 & 16 \\
\hline
2^3 & 2^2 & 2^1 & 2^0 \\
8 & 4 & 2 & 1 \\
\end{array}
\]

1 byte: 1 hex digit (Y) 1 hex digit (Z)

Value of byte 0xYZ is 16Y + Z

- Machine word = size of an address
 - (i.e., the size of a pointer in C)
 - Early computers used 16-bit addresses
 - Could address \(2^{16}\) bytes = 64 KB
 - Now 32-bit (4 bytes) or 64-bit (8 bytes)
 - Can address 4GB or 16 EB

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Bin</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilo</td>
<td>(2^{10})</td>
<td>(\sim 10^3)</td>
</tr>
<tr>
<td>Mega</td>
<td>(2^{20})</td>
<td>(\sim 10^6)</td>
</tr>
<tr>
<td>Giga</td>
<td>(2^{30})</td>
<td>(\sim 10^9)</td>
</tr>
<tr>
<td>Tera</td>
<td>(2^{40})</td>
<td>(\sim 10^{12})</td>
</tr>
<tr>
<td>Peta</td>
<td>(2^{50})</td>
<td>(\sim 10^{15})</td>
</tr>
<tr>
<td>Exa</td>
<td>(2^{60})</td>
<td>(\sim 10^{18})</td>
</tr>
</tbody>
</table>
Byte ordering

- **Big endian**: store higher place values at lower addresses
 - Most-significant byte (MSB) to least-significant byte (LSB)
 - Similar to standard way to write hex (implied with “0x” prefix)
- **Little endian**: store lower place values at lower addresses
 - Least-significant byte (LSB) to most-significant byte (MSB)
 - Default byte ordering on most Intel-based machines

<table>
<thead>
<tr>
<th>low addr</th>
<th>high addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x11223344 in big endian:</td>
<td>11 22 33 44</td>
</tr>
<tr>
<td>0x11223344 in little endian:</td>
<td>44 33 22 11</td>
</tr>
</tbody>
</table>
Byte ordering examples

- **Big endian**: most significant byte first (MSB to LSB)
- **Little endian**: least significant byte first (LSB to MSB)

<table>
<thead>
<tr>
<th>low</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>33</td>
<td>44</td>
</tr>
<tr>
<td>44</td>
<td>33</td>
</tr>
<tr>
<td>22</td>
<td>11</td>
</tr>
</tbody>
</table>

Decimal: 1
- 16-bit big endian: 00000000 00000001 (hex: 00 01)
- 16-bit little endian: 00000001 00000000 (hex: 01 00)

Decimal: 19 (16+2+1)
- 16-bit big endian: 00000000 00010011 (hex: 00 13)
- 16-bit little endian: 00010011 00000000 (hex: 13 00)

Decimal: 256
- 16-bit big endian: 00000001 00000000 (hex: 01 00)
- 16-bit little endian: 00000000 00000001 (hex: 00 01)
Question

- What is the byte in the highest address when hexadecimal number 0x8345 is stored in little-endian ordering?
 - A) 0x83
 - B) 0x45
 - C) 0x38
 - D) 0x54
 - E) There is not enough information to tell.
Lab Part 2

- Work on Lab Part 2
Character encodings

- **ASCII** ("American Standard Code for Information Interchange")
 - 1-byte code developed in 1960s
 - Limited support for non-English characters

- **Unicode**
 - Multi-byte code developed in 1990s
 - "All the characters for all the writing systems of the world"
 - Over 136,000 characters in latest standard
 - Fixed-width (UTF-16 and UTF-32) and variable-width (UTF-8)

<table>
<thead>
<tr>
<th>Number of bytes</th>
<th>Bits for code point</th>
<th>First code point</th>
<th>Last code point</th>
<th>UTF-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>U+0000</td>
<td>U+007F</td>
<td>Byte 1</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>U+0080</td>
<td>U+07FF</td>
<td>Byte 2</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>U+0800</td>
<td>U+FFFF</td>
<td>Byte 3</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>U+10000</td>
<td>U+10FFFF</td>
<td>Byte 4</td>
</tr>
</tbody>
</table>
Program encodings

- **Machine code**
 - Binary encoding of **opcodes** and operands
 - Specific to a particular CPU architecture (e.g., x86_64)

```
int add (int num1, int num2)
{
    return num1 + num2;
}
```

```
0000000000400606 <add>:
400606:   55             push   %rbp
400607:   48 89 e5      mov    %rsp,%rbp
40060a:   89 7d fc      mov    %edi,-0x4(%rbp)
40060d:   89 75 f8      mov    %esi,-0x8(%rbp)
400610:   8b 55 fc      mov    -0x4(%rbp),%edx
400613:   8b 45 f8      mov    -0x8(%rbp),%eax
400616:   01 d0         add    %edx,%eax
400618:   5d             pop    %rbp
400619:   c3             retq
```
Bitwise operations

- Basic bitwise operations
 & (and) | (or) ^ (xor)

- Not boolean algebra!
 && (and) || (or) ! (not)
 0 (false) non-zero (true)

- Important properties:
 \[
 \begin{align*}
 x & \& 0 = 0 \\
 x & 1 &= x \\
 x & 0 &= x \\
 x & 1 &= 1 \\
 x & 0 &= x \\
 x & 1 &= \neg x \\
 x & x &= 0
 \end{align*}
 \]

- Commutative:
 \[
 \begin{align*}
 x & \& y &= y & x \\
 x & y &= y & x \\
 x ^ y &= y ^ x
 \end{align*}
 \]

- Associative:
 \[
 \begin{align*}
 (x & y) & z &= x & (y & z) \\
 (x | y) | z &= x | (y | z) \\
 (x ^ y) ^ z &= x ^ (y ^ z)
 \end{align*}
 \]

- Distributive:
 \[
 \begin{align*}
 x & (y | z) &= (x & y) | (x & z) \\
 x | (y & z) &= (x | y) & (x | z)
 \end{align*}
 \]
Bitwise operations

- Bitwise NOT (~) - “flip the bits”
 - \(~0000 = 1111\) \((\sim0 = 1)\) \(~1010 = 0101\) \((\sim0xA = 0x5)\)

- Left shift (<<) and right shift (>>)
 - Equivalent to multiplying (<<) or dividing (>>) by two
 - Left shift: \(0110 \ll 1 = 1100\) \(1 \ll 3 = 8\)
 - **Logical** right shift (fill zeroes): \(1100 \gg 2 = 0011\)
 - **Arithmetic** right shift (fill most sig. bit): \(1100 \gg 2 = 1111\)
 (but only if unsigned) \(0100 \gg 2 = 0001\)

On stu:

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
<th>Shifted Value</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>0f0000000</td>
<td>>> 8 = 0000f0000</td>
<td>(arithmetic)</td>
</tr>
<tr>
<td>int</td>
<td>ff0000000</td>
<td>>> 8 = ff000000</td>
<td></td>
</tr>
<tr>
<td>uint</td>
<td>0f0000000</td>
<td>>> 8 = 0000f0000</td>
<td>(logical)</td>
</tr>
<tr>
<td>uint</td>
<td>ff0000000</td>
<td>>> 8 = 00ff0000</td>
<td></td>
</tr>
</tbody>
</table>
Masking

- Bitwise operations can extract parts of a binary value
 - This is referred to as masking; specify a bit pattern mask to indicate which bits you want
 - Helpful fact: 0xF is all 1’s in binary!
 - Use a bitwise AND (&) with the mask to extract the bits
 - Use a bitwise complement (~) to invert a mask
 - Example: To extract the lower-order 16 bits of a larger value \(v \), use “\(v \ & \ 0xFFFF \)”

\[
\begin{align*}
0xDEADBEEF & \ & 0xFFFF & = 0x0000BEEF & = 0xBEEF \\
0xDEADBEEF & \ & 0x0000FFFF & = 0x0000BEEF & = 0xBEEF \\
0xDEADBEEF & \ & 0xFFFF0000 & = 0xDEAD0000 \\
0xDEADBEEF & \ & \sim 0xFFFF & = 0xDEAD0000 \\
0xDEADBEEF & \ & \sim 0x0000FFFF & = 0xDEAD0000 \\
\end{align*}
\]
Question

Which bitwise operation would be most appropriate to set particular bits to zero?

- A) AND
- B) OR
- C) XOR
- D) Left shift
- E) None of the above
Question

• Which bitwise operation would be most appropriate to toggle particular bits?
 - A) AND
 - B) OR
 - C) XOR
 - D) Left shift
 - E) None of the above
Question

• Which bitwise operation would be most appropriate to set particular bits to one?
 – A) AND
 – B) OR
 – C) XOR
 – D) Left shift
 – E) None of the above
Question

Which bitwise operation would be most appropriate to divide a number by a power of two?

- A) AND
- B) OR
- C) XOR
- D) Left shift
- E) None of the above
What is the hex value of the C expression "8 >> 2"? Assume integers are 4-bit.

- A) 0xA
- B) 0xE
- C) 0x2
- D) There is not enough information to tell
Lab Part 3

- Work on Lab Part 3