

CS 261
Fall 2018

Mike Lam, Professor

Threads

Parallel computing

● Goal: concurrent or parallel computing
– Take advantage of multiple hardware units to solve multiple

problems simultaneously
● Motivations:

– Maintain high utilization during slow I/O downtime
– Maintain UI responsiveness during computation
– Respond simultaneously to multiple realtime events
– Split up a large problem and solve sub-pieces concurrently to

achieve faster time-to-solution (strong scaling)
– Solve larger problems by adding more hardware (weak scaling)

Parallel computing

● Process: currently-executing program
– Code and state (PC, stack, data, heap)
– Private address space

● Thread: unit of execution or logical flow
– Exists within the context of a single process
– Shares code/data/heap/files w/ other threads
– Keeps private PC, stack, and registers

● Stacks are technically shared, but harder to access

Threads

● One main thread for each process
– Can create multiple peer threads

Single-core example

POSIX threads

● Pthreads – POSIX standard interface for threads in C
– Not part of the standard library

● Requires “-lpthread” flag during linking

– pthread_create: spawn a new child thread
● pthread_t struct for storing thread info
● attributes (or NULL)
● thread work routine (function pointer)
● thread routine parameter (void*, can be NULL)

– pthread_self: get current thread ID
– pthread_exit: terminate current thread

● can also terminate implicitly by returning from the thread routine

– pthread_join: wait for another thread to terminate

Threading example

#include <stdio.h>
#include <pthread.h>

void* work (void* arg)
{
 printf("Hello from work routine!\n");
 return NULL;
}

int main ()
{
 printf("Spawning single child ...\n");

 pthread_t child;
 pthread_create(&child, NULL, work, NULL);
 pthread_join(child, NULL);

 printf("Done!\n");

 return 0;
}

main

create()

join()

peer

work()

Shared memory

● Global variables (shared, single static copy)
– Often used for communication between threads
– Requires careful coordination

● Local “automatic” variables (multiple copies, one on each stack)
– Technically still shared if in memory, but harder to access
– Not shared if cached in register
– Safer to assume they're private; this is conventional

● Local static variables (shared, single static copy)
– Similar to global variables but with reduced scope

● Heap-allocated variables (shared, dynamic)
– Requires coordination if threads share pointers to same memory

Processes vs. threads

● Process: currently-executing program
– Code and state (PC, stack, data, heap)
– Created via system call (fork); parent and child continue from call site

– Private address space not shared w/ other processes
– Advantages: isolation, safety, and mutual exclusion

● Thread: unit of execution or logical flow
– Private PC, registers, condition codes, and stack
– Created via library call (pthread_create); child runs separate routine

– Shared address space w/ other threads
– Advantages: faster context switching, more shared resources

Issues with shared memory

foo:
 irmovq x, %rcx
 irmovq 7, %rax
 mrmovq (%rcx), %rdx
 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

x:
 .quad 0

This interleaving is ok.

thread1 thread2

foo()

 irmovq x, %rcx
 irmovq 7, %rax

 mrmovq (%rcx), %rdx
 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

 irmovq x, %rcx
 irmovq 7, %rax

 mrmovq (%rcx), %rdx
 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

Issues with shared memory

foo:
 irmovq x, %rcx
 irmovq 7, %rax
 mrmovq (%rcx), %rdx
 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

x:
 .quad 0

This one is not!

thread1 thread2

foo()

 irmovq x, %rcx
 irmovq 7, %rax
 mrmovq (%rcx), %rdx

 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

 irmovq x, %rcx
 irmovq 7, %rax
 mrmovq (%rcx), %rdx

 addq %rax, %rdx
 rmmovq %rdx, (%rcx)
 ret

Issues with shared memory

● A program is non-deterministic when it can produce
different outputs given the same inputs

● A data race occurs when correct output relies on a
particular ordering during execution

● Deadlock occurs when threads or processes are
blocked waiting on a condition that will never happen

Mutual exclusion

● Fixing a data race requires some form of mutual exclusion
– Only one thread at a time should update shared memory
– In Pthreads, this can be accomplished using either a mutex or a

semaphore (more details in CS 361)
– However, these mechanisms introduce overhead!

● Threads must perform additional checks before updating memory
● Some threads may have to pause and wait before they may continue

– If not implemented carefully, the additional overhead may defeat
the purpose of using multiple threads

● Theme: Systems design requires tradeoffs
● Theme: Details matter (a LOT!)

– Efficient parallel and distributed computing can be very difficult

Automatic parallelism

● Wouldn’t it be great if the compiler could automatically
parallelize our programs?
– This is a HARD problem
– In some cases, it is (kind of) possible
– Approach #1: code annotations in existing language

● Example: OpenMP (CS 450, CS 470)

– Approach #2: new language designed for parallelism
● Example: HPF and Chapel (CS 430, CS 470)

 int a[100];

 #pragma omp parallel for
 for (int i=0; i < 100; i++)
 a[i] = i*i;

 var a: [100] int;

 forall i in 0..100 do
 a[i] = i*i;

OpenMP example Chapel example

Parallel systems

● Uniprogramming / batch (1950s) - CS 261
– One process at a time w/ complete control of CPU
– Minimal OS (mostly for launching programs)

● Multiprogramming / multitasking / time sharing (1960s) - CS 261, CS 450
– Multiple processes taking turns on a single CPU
– Increased utilization, lower response time
– OS handles scheduling and context switching

● (Symmetric) multiprocessing (1970s) - CS 361, CS 450, CS 470
– Multiple processes share multiple CPUs or cores
– Increased throughput, increased parallelism
– OS handles scheduling, context switching, and communication

● Distributed processing (1980s and onward) - CS 361, CS 470
– Multiple processes share multiple computers
– Massive scaling; OS no longer sufficient (other middleware required)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

