

CS 261
Fall 2018

Mike Lam, Professor

Signals

Signals

● Signal: abstraction for exceptional control flow
– A standard, clean way to handle exceptions
– Low-level details do not matter

● Signals are sent and received
– Kernel sends a signal when it detects an exception
– Processes can also send each other signals
– The destination process may ignore the signal, terminate, or

catch the signal w/ a signal handler
● man 7 signal for complete guide (“kill -l” for short list)

– We'll just learn the basics today

Important signals

● SIGINT (#2) – interrupt from keyboard (CTRL-C)

● SIGABRT (#6) – abort() function was called

● SIGBUS (#7) – I/O bus error

● SIGFPE (#8) – floating-point exception

● SIGKILL (#9) – kill process

● SIGSEGV (#11) – segmentation fault

● SIGALRM (#14) – interval timer; set with alarm()

● SIGTERM (#15) – terminate process (softer than SIGKILL)

● SIGCHILD (#17) – a child process has terminated

● SIGUSR1 / SIGUSR2 – custom signals

Handling signals in C

● #include <signal.h>

● signal() / sigaction(): install signal handler
– Parameters

● signum – signal number
● handler – new action

– SIG_IGN – ignore
– SIG_DFL – restore default
– otherwise: the address of a signal handler function (i.e., a function pointer)

– sigaction is more portable but also more complex

● Signal handlers are just regular functions
– Must take an int (the signal number) and return void
– May include & operator or omit it when calling signal()

● Cannot pass actual function in C, so it assumes you meant the address

Sending signals in C

● #include <signal.h>

● raise() / kill(): send a signal
– Former sends to current process, latter sends to a specific pid

● Must have permission to do so (generally must be the same user)
● Can also use the kill command-line utility (e.g., “kill -9 <pid>” to

send SIGKILL)

● Some signals have special call mechanisms
– SIGALRM can be requested using alarm()

● Must provide the number of seconds that should elapse before the
signal is sent

Safe signal handlers

● Most important
– Keep it simple
– Only use async-signal-safe functions

● See man 7 signal for a list
● If you want console output, use write not printf!

● Less important
– Save/restore "errno" global variable
– Declare global variables as "volatile"
– Declare global flags using atomic type
– If you want the handler to continue handling the same signal,

make sure you re-install it (or use sigaction to avoid this)

Signal example (raising signals)

void handler (int sig)
{
 write(1, "Hello!\n", 8);
}

int main ()
{
 signal(SIGUSR1, handler);
 raise(SIGUSR1);
 raise(SIGSEGV);
 return 0;
}

Signal example (SIGSEGV)

void handler (int sig)
{
 write(1, "OK\n", 4);
 exit(0);
}

int main ()
{
 int *p = 0;

 signal(SIGSEGV, handler); // install segfault handler

 int v = *p; // null pointer dereference

 printf("Here!\n"); // won't get here
 return v;
}

Signal example (SIGINT)

#define BUFSIZE 1024

void handler (int sig)
{
 write(1, "Signal!\n", 9);
}

int main ()
{
 char buf[BUFSIZE];
 int i = 0;

 // install signal handler
 signal(SIGINT, handler);

 // read / print loop
 while (fgets(buf, BUFSIZE, stdin) != 0) {
 printf("Line %d: %s", i++, buf);
 }

 return 0;
}

Signals in debuggers

● By default, signals are caught by gdb
– Some cause execution to be paused for debugging

● E.g., SIGINT (CTRL-C)

– Some are also passed through to the user program
● SIGSEGV and others

● GDB allows you to change this behavior
– info signal – show current behavior

– handle <signal> <option> – change behavior
● stop/nostop: pause the program?
● print/noprint: notify the user w/ a message?
● pass/nopass: pass signal through to program?

Parallel computation w/ processes

● Spawn multiple processes
– Use a shell script or multiple fork() calls

– Processes run concurrently
● If CPU is single-core, they multitask on that core
● If CPU is multi-core, they execute in parallel

● Communicate via signals, files, or sockets
– No shared memory in address space
– Use message-passing to coordinate computation

● More about this in CS 361 (and potentially CS 470)

● Next week we'll see a different approach
– Shared memory: multiple threads share a single address space
– Faster but potentially more dangerous

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

