

CS 261
Fall 2018

Mike Lam, Professor

Exceptional Control Flow

and Processes

Exceptional control flow

● Most control flow is sequential
– However, we have seen violations of this rule

● (e.g., exceptions in Java or segfaults in C)

Exceptional control flow

● Exceptions violate sequential control flow
– Unconditional transfer to another location in code
– Often the result of an error condition

● But not necessarily – we can also use exceptions for time-sharing!

– Categorized as asynchronous vs. synchronous
● Whether it happens as a result of an external source or not

– Categorized by recovery possibility
● Always returns, sometimes returns, or never returns

– If recovery is possible, further categorized by recovery location
● Same instruction vs. next instruction

Interrupts

● Interrupt: communication mechanism
– Asynchronous, always returns to next instruction
– “Interrupts” execution as the result of an outside event

● An I/O operation has finished
● The process has finished its time slice

Traps

● Trap: intentional control transfer to kernel
– Synchronous, (almost) always returns to next instruction
– Like a function call, except the target runs in kernel mode
– Also referred to as system calls
– x86-64 instruction “syscall” w/ ID in %rax

– Parameters are passed in %rdi-%r9; return value stored in %rax

– Well-known standards (e.g., POSIX)

System calls

● Some of the functions we've been using in C are actually
wrappers for a system call (or multiple system calls)
– fopen, fread, malloc

● System calls: open (id=2), read (id=0), mmap (id=9)

– System call interfaces are defined by standards
● SysV vs. POSIX (IEEE standard: http://pubs.opengroup.org/onlinepubs/9699919799/)

– In general, system call wrappers are called system-level functions
– It is important to check for errors after calling these functions

● Textbook uses wrapper functions (e.g., "Open") for this

int fd = open("file.txt", O_RDONLY);
if (fd < 0) {
 fprintf(stderr, "Error opening file: %s\n", strerror(errno));
 exit(EXIT_FAILURE);
}

Textbook notes

● Error handling is important!
– Textbook provides error-handling wrappers; this is good practice
– However, we’ll omit error handling to simplify examples

● envp parameter to main() is not standard
– getenv() is the only environmental mechanism defined by the

POSIX C99 standard

Faults

● Fault: error that is potentially correctable
– Synchronous, sometimes returns to same instruction
– We have already seen some of these!

Faults

● Fault: error that is potentially correctable
– Synchronous, sometimes returns to same instruction
– Page fault (#14): virtual memory cache miss

● Recoverable – read the required page from slower memory

– Segmentation fault (#13): invalid memory access
● Not recoverable – undefined behavior

– Divide-by-zero error (#0)
● Not recoverable – undefined result

Aborts

● Abort: unrecoverable error
– Synchronous, never returns
– Machine check (#18): fatal hardware error

Exception implementation

● Kernel exception table
– Every exception is assigned a unique ID
– Table translates exception ID to handler address

Processes

● Exceptions enable processes
– Process: a running program

● One program, (possibly) many processes

– Abstraction provided by OS kernel
● One kernel, many user processes

– Shared portion of virtual address space
● Kernel memory (above stack)
● This region is not visible to user programs

– Toggle control (kernel and processes)
● Interrupts – cycle through processes ("round robin")
● Traps – function call from processes into kernel ("syscalls")
● Faults – software error (recover or abort)
● Aborts – stop process without taking down the machine

Processes

● Process: instance of an executing program
– Independent single logical flow and private virtual address space

● Logical flow: sequence of executed instructions
● Concurrency: overlapping logical flows
● Multitasking: processes take turns
● Parallelism: concurrent flows on separate CPUs/cores

Time

Logical
flow

Concurrent
flows

Multitasking
concurrent

flows

Parallel
concurrent

flows

CPU Core1 Core2

Implementing processes

● Processes are abstractions
– Implemented/provided by the operating system kernel
– Kernel maintains data structure w/ process information

● Including an ID for each process (pid)

– Multitasking via exceptional control flow
● Periodic interrupt to switch processes
● Called round-robin switching

– Context switch: swapping current process
● Save context of old process
● Restore context of new process
● Pass control to the restored process

Linux process tools

● ps – list processes
– "ps -fe" to see all processes on the system

– "ps -fu <username>" to see your processes

● top – list processes, ordered by current CPU
– Auto-updates

● /proc – virtual filesystem exposing kernel data structures
● pmap – display memory map of a process
● strace – prints a list of system calls from a process

– Compile with "-static" to get cleaner traces

Process creation

● The fork() syscall creates a new process
– Initializes new entry in the kernel data structures
– To user code, the function call returns twice

● Once for original process (parent) and once for new process (child)
● Returns 0 in child process
● Returns child pid in parent process
● Both processes will continue executing concurrently

– Parent and child have separate address spaces
● Child's space is a duplicate of parent's at the time of the fork
● They will diverge after the fork!

– Child inherits parent's environment and open files

Process creation example

● Fork returns twice!

int main ()
{
 printf("Before fork\n");

 pid_t pid = fork();

 printf("After fork: pid=%d\n", pid);

 return 0;
}

Process creation example

● What does this code do?

int main ()
{
 printf("Before fork\n");

 pid_t pid1 = fork();

 printf("After fork: pid1=%d\n", pid1);

 pid_t pid2 = fork();

 printf("After second fork: pid1=%d pid2=%d\n", pid1, pid2);

 return 0;
}

Process creation example

● Fork returns twice! (every time)
– Beware of non-determinism and I/O interleaving

int main ()
{
 printf("Before fork\n");

 pid_t pid1 = fork();

 printf("After fork: pid1=%d\n", pid1);

 pid_t pid2 = fork();

 printf("After second fork: pid1=%d pid2=%d\n", pid1, pid2);

 return 0;
}

Exercise: Modify this program to fork a total of three processes

Parent/child process example

● Parents can wait for children to finish

int main ()
{
 printf("Before fork\n");

 pid_t pid = fork();

 if (pid != 0) { // parent
 wait(NULL);
 printf("Child has terminated.\n");

 } else { // child
 printf("Child is running.\n");
 }

 printf("After fork: pid=%d\n", pid);

 return 0;
}

Process control syscalls

● #include <stdlib.h>

– getenv: get environment variable value

– setenv: change environment variable value
● #include <sys/types.h>

– pid_t: new type for PID value
● #include <unistd.h>

– fork: create a new process

– getpid: return current process id (pid)

– getppid: return parent’s process id (pid)

– exit: terminate current process

– execve: load and run another program in the current process

– sleep: suspend process for specified time period
● #include <sys/wait.h>

– waitpid: wait for a child process to terminate

– wait: wait for all child processes to terminate

Processes and shells

● A shell is an interactive application-level program that
launches other programs (called jobs or process groups)
– All spawned as a result of the same command

● Foreground vs. background jobs
– A single foreground job (interactive I/O)
– Zero or more background jobs
– Use '&' to start something in the background

● Ex: "./my_prog &"

– Use CTRL-Z to send foreground job to background
– Use CTRL-C to interrupt the foreground job
– fg: promote background job to foreground

Fork/execve example

● Shells use fork() and execve() to run commands

int main ()
{
 printf("Before fork\n");
 pid_t pid = fork();

 if (pid != 0) { // parent
 wait(NULL);
 printf("Child has terminated.\n");

 } else { // child
 printf("Child is running.\n");
 char *cmd = "/bin/uname";
 char *args[] = { "uname", "-a", NULL };
 char *env[] = { NULL };
 execve(cmd, args, env);
 printf("This won't print unless an error occurs.\n");
 }

 printf("After fork: pid=%d\n", pid);
 return 0;
}

/bin/uname

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24

