Combinational Circuits
The final frontier

- Java programs running on Java VM
- C programs compiled on Linux
- Assembly / machine code on CPU + memory
- ???
- Switches and electric signals
Aside: Relays

• From “Code” recommended reading:

Light is on when switch is on

Question: what happens if we connect the light bulb to the other contact?
Aside: Relays

- From “Code” recommended reading:

 [Diagram of regular relay]
 Regular relay

 [Diagram of inverted relay (NOT)]
 Inverted relay (NOT)
Aside: Relays

● From “Code” recommended reading:

Relays in series (AND)

Relays in parallel (OR)
Digital signals are transmitted via electric signals by varying voltages

- 1.0 V (high) = binary 1
- 0.0 V (low) = binary 0
- Use a threshold to distinguish

Images from https://learn.sparkfun.com/tutorials/transistors
Transistors

- **Transistors** are the fundamental hardware component of computing
 - Similar to relays; replaced vacuum tubes
 - Smaller, more reliable, and use less energy
 - Primary functions: switching and amplification
 - Mostly silicon-based semiconductors now
 - Metal–Oxide–Semiconductor Field-Effect Transistor (MOSFET)
 - n-channel (“on” when \(V_{\text{gate}} = 1 \text{V} \)) vs. p-channel (“off” when \(V_{\text{gate}} = 1 \text{V} \))
 - Mass-produced on integrated circuit chips
 - For convenience, we abstract their behavior using logic gates
Logic gates

• Primary gates:

- **AND**
 - Logic symbol: \(\& \)
 - Truth table:
 - \(0 \times 0 = 0 \)
 - \(0 \times 1 = 0 \)
 - \(1 \times 0 = 0 \)
 - \(1 \times 1 = 1 \)

- **OR**
 - Logic symbol: \(\lor \)
 - Truth table:
 - \(0 \lor 0 = 0 \)
 - \(0 \lor 1 = 1 \)
 - \(1 \lor 0 = 1 \)
 - \(1 \lor 1 = 1 \)

- **NOT**
 - Logic symbol: \(! \)
 - Truth table:
 - \(!0 = 1 \)
 - \(!1 = 0 \)

- **NAND**
 - Logic symbol: \(\neg \)
 - Truth table:
 - \(\neg 0 = 1 \)
 - \(\neg 1 = 0 \)
 - \(\neg 0 = 1 \)
 - \(\neg 1 = 0 \)

- **NOR**
 - Logic symbol: \(\land \)
 - Truth table:
 - \(0 \land 0 = 0 \)
 - \(0 \land 1 = 0 \)
 - \(1 \land 0 = 0 \)
 - \(1 \land 1 = 0 \)

- **XOR**
 - Logic symbol: \(\lor \neg \lor \lor \neg \)
 - Truth table:
 - \(0 \lor 0 = 0 \)
 - \(0 \lor 1 = 1 \)
 - \(1 \lor 0 = 1 \)
 - \(1 \lor 1 = 0 \)
• Part 1
Important properties

- **Identity:** $a \text{ AND } 1 = a$ \quad (a \text{ OR } 0) = a$

- **Constants:** $a \text{ AND } 0 = 0$ \quad (a \text{ OR } 1) = 1
 - Also: $a \text{ NAND } 0 = 1$ \quad (a \text{ NOR } 1) = 0

- **Inverses:** $a \text{ NAND } 1 = !a$ \quad (a \text{ NOR } 0) = !a
 - Also: $a \text{ NAND } a = !a$ \quad a NOR a = !a

- **Double inverse:** $!!a = a$
 - Or: $\text{NOT(}\text{NOT}(a)) = a$

- **De Morgan’s law:** $!(a \& b) = !a \mid !b$
 - Alternatively: $!(a \mid b) = !a \& !b$ \quad (remember this from CS 227?)
Basic circuits

- **Circuits** are formed by connecting gates together
 - Inputs and outputs
 - Link output of one gate to input of another
 - Some circuits have multiple inputs and/or outputs
 - Textbook uses Hardware Description Language (HDL)
 - Equivalent to **boolean formulas** or **functions**
 - \(f(g(x, y)) \) means “apply \(f \) to the result of applying \(g \) to \(x \) and \(y \)”
 - In a diagram: \(x, y \rightarrow g \rightarrow f \) (i.e., ordering is \(g \) first, then \(f \))
• \(f(g(x, y)) \) means “apply \(f \) to the result of applying \(g \) to \(x \) and \(y \)”
 - In a diagram: \(x, y \rightarrow g \rightarrow f \) (i.e., ordering is \(g \) first, then \(f \))

• NAND example: (similarly for NOR)
 - Infix/boolean notation: \(a \text{ NAND } b = !(a \& b) \)
 - Function notation: \(\text{NAND}(a, b) = \text{NOT}(\text{AND}(a, b)) \)
Basic circuits

- \(f(g(x, y)) \) means “apply \(f \) to the result of applying \(g \) to \(x \) and \(y \)”
 - In a diagram: \(x, y \rightarrow g \rightarrow f \) (i.e., ordering is \(g \) first, then \(f \))
- NAND example: (similarly for NOR)
 - Infix/boolean notation: \(a \text{ NAND } b = \neg(a \& b) \)
 - Function notation: \(\text{NAND}(a, b) = \neg(\text{AND}(a, b)) \)

\[\begin{array}{c|c|c|c|c}
\text{a} & \text{b} & \text{a AND b} \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
\end{array} \]

\[\begin{array}{c|c|c|c|c}
\text{a} & \text{b} & \text{a NAND b} \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array} \]
Basic circuits

- Circuits are **equivalent** if the truth tables are the same
- \(a \ \text{XOR} \ b = (a \ \text{OR} \ b) \ \text{AND} \ (a \ \text{NAND} \ b) \)
- \(\text{XOR}(a, b) = \text{AND}(\text{OR}(a,b), \text{NAND}(a,b)) \)
Basic circuits

- Circuits are **equivalent** if the truth tables are the same
 - \(a \text{ XOR } b = (a \text{ OR } b) \text{ AND } (a \text{ NAND } b) \)
 - \(\text{XOR}(a, b) = \text{AND}(ext{OR}(a,b), \text{NAND}(a,b)) \)
Basic circuits

- Circuits are **equivalent** if the truth tables are the same
 - \(a \text{ XOR } b = (a \text{ OR } b) \text{ AND } (a \text{ NAND } b) \)
 - \(\text{XOR}(a, b) = \text{AND}(\text{OR}(a,b), \text{NAND}(a,b)) \)
Basic circuits

- Circuits are **equivalent** if the truth tables are the same
 - \(a \ XOR \ b = (a \ OR \ b) \ AND \ (a \ NAND \ b) \)
 - \(\text{XOR}(a, b) = \text{AND}(\text{OR}(a,b), \text{NAND}(a,b)) \)

\[\begin{array}{c|c|c}
 a & b & \text{\text{XOR}}(a,b) \\
 \hline
 0 & 0 & 0 \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
\end{array}\]
Lab

• Part 2
Universal gates

- NAND and NOR gates are universal
 - Each one alone can reproduce all other gates
 - Example: \(a \text{ AND } b = a \& b = !(a \& b) = !(a \text{ NAND } b) = (a \text{ NAND } b) \text{ NAND } (a \text{ NAND } b) \)
Universal gates

• NAND and NOR gates are universal
 - Each one alone can reproduce all other gates
 - Example: \(a \text{ AND } b = a \& b = !(!(a \& b)) = !(a \text{ NAND } b) = (a \text{ NAND } b) \text{ NAND } (a \text{ NAND } b) \)

 • Similarly: \(a \text{ AND } b = !(!(a \& b)) = !(!a \mid !b) = !a \text{ NOR } !b = (a \text{ NOR } a) \text{ NOR } (b \text{ NOR } b) \)
Circuit types

- Two main kinds of circuits:
 - **Combinational** circuits: outputs are a boolean function of inputs
 - Not time-dependent
 - Used for **computation**
 - **Sequential** circuits: output is dependent on previous outputs
 - Time-dependent
 - Used for **memory**
Computation

- Goal: identify circuits that perform useful computation
 - Testing bits to see if they’re equal
 - Selecting between multiple inputs
 - Adding or subtracting bits
 - Bitwise operations (AND, OR, XOR)
 - Make them work on bytes instead of bits
Equality

\[a \text{ EQ } b = (a \& b) | (!a \& !b) \]
Multiplexor ("selector")

MUX (a, b, s) = (s & a) | (!s & b)
Half adders

Half Adder

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Half adders

\[a + b = a \oplus b + a \land b \]

Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Half Adder
Abstraction

- Name circuits, then use them to build more complex circuits
 - E.g., use bit-level EQ to build a word-level equality circuit:
Word-level 2-way multiplexer
Word-level 4-way multiplexer

How many selector inputs would be required for eight data inputs?

How many data inputs could be supported using four selector inputs?
Connect full adders to build a ripple-carry adder that can handle multi-bit addition:
Adder/subtractor

In two's complement: \(B - A = B + \neg A + 1 \)
ALUs and memory

- Combine **adders** and **multiplexors** to make arithmetic/logic units.
- Combine **flip-flops** to make register files and memory.

![Basic Arithmetic Logic Unit (ALU)](image)

![4-bit Register](image)

Data 0	Q_A	Q_B	Q_C	Q_D
0 | 0 | 0 | 0 | 0

Clock 0 | | | | |
CPUs

- Combine ALU with registers and memory to make CPUs
Computers

• Combine CPU with other electronic components and devices (similarly constructed) communicating via buses to make a computer
Big picture

- Basic systems design approach: exploit abstraction
 - Start with simple components
 - Combine to make more complex components
 - Repeat using the new components as black box “simple components”

- This is true of most areas in systems
 - CS 261: transistors → gates → circuits → adders/flip-flops → ALUs/registers → CPUs/memory → computers
 - CS 261: machine code → assembly → C code → Java/Python code
 - CS 361/470: threads → processes → nodes → networks/clusters
 - CS 432: scanner → parser → analyzer → code generator → optimizer
 - CS 450: files + processes + I/O → kernel → operating system
Course status

- We’ve hit the bottom
 - Or at least as far down as we’re going to go (logic gates); from here we go back up!
- Next week
 - Sequential circuits
 - CPU architecture

Suggestion: download Logisim (already installed on lab machines) and play around with some circuits!
Lab

• Part 3