CS 261
Fall 2018

Mike Lam, Professor

X86-64 Data Structures
and Misc. Topics

I Topics

Homogeneous data structures

- Arrays

- Nested / multidimensional arrays
Heterogeneous data structures
— Structs / records

- Unions
Floating-point code

Misc. notes

I Arrays

* An array Is simply a block of memory (bits)
- Fixed-sized homogeneous elements of a particular type (context)
— Contiguous layout
- Fixed length (not stored as part of the array!)

int32_t stuff[3]; 0x600108 Sturf[2]
0X600104 stuff[1]

3 elements
each element is 4 bytes wide 0x600100 stuff[o]

total size is 3 *4 = 12 bytes o
stuff

movqg $0x600100, %rbx

stuff[0] = 7 movl $7, (%rbx)
stuff[1] = 7 - movl $7, 4(%rbx)
stuff[2] = 7 movl $7, 8(%rbx)

Arrays and pointers

Array name Is essentially a pointer to first element (base)
- The ith element is at address (base + size * i)
C pointer arithmetic uses intervals of the element width

— No need to explicitly multiply by size in C

- “stuff+0” or “stuff” is the address of the first element
- “stuff+1” is the address of the second element

- “stuff+2” Iis the address of the third element

* Indexing = pointer arithmetic plus dereferencing
- “stuff[i]” means “*(stuff + i)”

- In assembly, use the scaled index addressing mode
» (base, index, scale) - e.g., (%rbx, %rdi, 4) for 32-bit elements

I Nested / multidimensional arrays

* Generalizes cleanly to multiple dimensions

Think of the elements of outer dimensions as being arrays of inner dimensions
“Row-major” order: outer dimension specified first
E.g., “int16_t grid[4][3]" IS a 4-element array of 3-element arrays of 16-bit integers

2D: Address of (ij)th element is (base + size(cols * i + j))

3D: Address of (i,f,k)th element is (base + size((ng, * ng,) * i+ ny, *j + k))

grid

0x600112

Ox60010cC

OX600106

0Xx600100

+2 +4
P
grid[0][0] grid[o][2]

+6

grid[e][1]

grid[3]
grid[2]
grid[1]
grid[o]

] Ox600112
1 OXx600106c
—1 Ox600106
Ox600100
o
grid

Structs

* C structs are also just regions of memory

- “Structured” heterogeneous regions--they’re split into fields

— Contiguous layout (w/ occasional gaps for alignment)
- Offset of each field can be determined by the compiler
- Sometimes called “records” generally

struct { (%rbx = &x and %rdi = 1)
int 1i; X.1=1; movl $1, (%rbx)
int j; X.j = 2; movl $2, 4(%rbx)
int a[2]; x.a[0] = 3; movl $3, 8(%rbx)
int *p; x.a[l] = 4; movl $4, 8(%rbx, %rdi, 4)
Y ox; X.p = NULL; movqg $0, 16(%rbx)
’/
Offset 0 4 8 16
Contents i j a[0] a[1] P

24

I Alignment

* Alignment restrictions require addresses be n-divisible

- E.g., 4-byte alignment means all addresses must be divisible by 4
- Specified using an assembler directive

- Improves memory performance if the hardware matches

— Can be avoided in C using “attribute (packed)” (asin elf.h)

struct {
int 1i;
char c;
int j,;
} rec; : :
None 1 C]
2-byte il C ji
4-byte 1 C J
8-byte 1 C j

I Union

* C unions are also just regions of memory

— Can store one “thing”, but it could be multiple sizes depending on what
kind of “thing” it currently is (So context is even more important!)

— All “fields” start at offset zero
— Generally a bad idea! (circumvents the type system in C)
— Can be used to do OOP in C (i.e., polymorphism)

typedef enum { CHAR, INT, FLOAT } objtype_t;

typedef struct {
objtype_t type;

union { obj_t foo;
gg?ri?; foo.type = INT;
float,f' foo.data.i = 65;
} data;

} obj_t; printf(“%c”, foo.data.c); VALID!

I Floating-point code

* X87: extension of x86 for floating-point arithmetic

— Originally for the 8087 floating-point co-processor
- Adds new floating-point "stack" registers ST(0) — ST(7)

* 80-bit extended double format (15 exponent and 63 significand bits)
— Push/pop with FLD and FST instructions

- Arithmetic: FADD, FMUL, FSQRT, etc.
- Largely deprecated now in favor of new SIMD architectures

I Floating-point code

* Single-Instruction, Multiple-Data (SIMD)

- Performs the same operation on multiple pairs of elements
- Also known as vector instructions

 Various floating-point SIMD instruction sets

- MMX, SSE, SSE2, SSE3, SSE4, SSE5, AVX, AVX2

- 16 new extra-wide XMM (128-bit) or YMM (256-Dit)
registers for holding multiple elements

» Floating-point arguments passed in %xmmo -%xmm7
e Return value in %xmmo
* All reqgisters are caller-saved

I Floating-point code

 SSE (Streaming SIMD Extensions)

- 128-bit XMM reqisters
 Can store two 64-bit doubles or four 32-bit floats
- New instructions for movement and arithmetic

* General form: <op><s|p><s|d>

<s|p>: s=scalar (single data) p=packed (multiple data)
<s|d>: s=single (32-bit) d=double (64-bit)

E.g., “addsd” = add scalar 64-bit doubles

 E.g., “mulps = add packed 32-bit floats

* AVX (Advanced Vector Extensions)

- 256-bit YMM reqisters

» Can store four 64-bit doubles or eight 32-bit floats
— Similar instructions as SSE (but with “v” prefix, e.g., vmulps)

I SSE/AVX

* Movement
- movss / movsd
- movaps / movapd
* Conversion
- cvtsi2ss / cvtsi2sd
- cvtss2si / cvtsd2si
- cvtss2sd / cvtsd2ss
* Arithmetic
- addss / addsd

addps / addpd
- .. (sub, mul, div,

- max, min, sqrt)

andps / andpd

xorps / xorpd

« Comparison
- ucomiss / ucomisd

(AVX has "v____ " opcodes)

255 127 0
fymmO ’ Hoxmm "
Hymml Yoxmm1 i i
hymm2 Yixmm2 N
Aymm3 Yhxmm3]'
hymm4 3'::{;:4 N
AymmS YxmmS]I
Aymm6 Yixmmé& H
hymm7 i Yexmm7 |
hymmB Y%xmm8
HymmS % xmm9 |
%ymm10 %xmm10 .
=
%ymm12 Yxmm12 | l

—
Yymmi3 Nymm13

e ————————
Yymm14 Hxmm14

P AT st
Yymm15 Yxmm16

1st FP arg./Return

2nd FP argument

3rd FP argument

4th FP argument

5th FP argument

6th FP argument

7th FP argument

8th FP argument

Caller saved

Caller saved

Caller saved

Caller saved

Caller saved

Caller saved

Caller saved

Caller saved

I Bitwise operations in SSE/AVX

* Assembly Instructions provide low-level access to
floating-point numbers

- Some numeric operations can be done more efficiently
with simple bitwise operations

* AKA: Stupid Floating-Point Hacks™

- Set to zero (value XOR value)
- Absolute value (value AND ox7fffffff)

- Additive inverse (value XOR 0x80000000)
e Lesson: Information = Bits + Context

* (even If it wasn't the intended context!)

I Aside: Opcode Suffixes

* We've been assuming that the operand size suffix for
opcodes Is mandatory
- E.qg., the "1" or "g" in "mov1"” or "movq"

* Technically, it is only required if it cannot be inferred

- E.g., mov %eax, %edi is not ambiguous
 We can infer that this is a 32-bit move because of the destination
- However, mov $2, (%rdx) is ambiguous

* Is it a 8-bit move? 32 bits? 64 bits?
e A suffix is required here (e.g., movl $2, (%rdx) for 32 bits)

— Generally, it is safer always to include the suffix

I Aside: Memory Restrictions

* In Xx86-64, most opcodes have no memory -> memory form

- l.e., you can't read and write memory in the same Iinstruction
- Invalid: movl (%rax), (%rdx)

* Solution: use a temporary register
movl (%rax), %ecx
movl %ecx, (%rdx)

halt

nop
rrmovg TA, 1B

imu‘lfq v » rE

ramovq rA, D(rB) | 4 | 0 rA|rB|

mromovg D(rB), rA

OFg rA, 1B
jXX Dest
cmovEE rA, rB
call Dest
ret

pushg rA

popq A

Operations

addg
~on
wsifeTal
e lEla]

0 1 2 5 6 7 8 Number Regisler name
i“ 0 o Krax 8 %rs
i Yrex 9 %r9
10 %r10
4 i 11 %ril
3 frbax 12 %ri2
20 |rA|rB 4 hrsp 13 %ri3
- 5 %rbp 14 %rid
1 ? Krdi
D
o FAlB D Value Name Meaning
1 AOK Normal operation
IE fn |rA ’E] 2 HLT halt instruction encountered
= i Dest ‘ 3 ADR lnvalid ?ddresstenmuntered
4 INs Invalid instruction encountered
[2 fn rA rEl
RF: Program registers
[8]o] Dest I —
hrax hrsp hr8 hri2
[o]o]
hrex Jrbp #ro %ri3
F 5
[A]o]ra rdx Yrsi %r10 Yrid
|B|o[ra|F| rbx Yrdi Yril
Branches Moves CcC: Stat: Program status
Condition
sp[7]0] sme[7]4] rrmova[2]0] cmovne[2]4] codes
ne[7[1] sge[7]s] cmovie[2]1] cnovge[2]5] o DMEM: Memory
PC

n[7]2] .

je

[7]3]

cmovl CMOVE HH
cmove B

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

