

CS 261
Fall 2018

Mike Lam, Professor

0000000100000f50 55 48 89 e5 48 83 ec 10 48 8d 3d 3b 00 00 00 c7
0000000100000f60 45 fc 00 00 00 00 b0 00 e8 0d 00 00 00 31 c9 89
0000000100000f70 45 f8 89 c8 48 83 c4 10 5d c3

_main:
0000000100000f50 pushq %rbp
0000000100000f51 movq %rsp, %rbp
0000000100000f54 subq $0x10, %rsp
0000000100000f58 leaq 0x3b(%rip), %rdi
0000000100000f5f movl $0x0, -0x4(%rbp)
0000000100000f66 movb $0x0, %al
0000000100000f68 callq 0x100000f7a
0000000100000f6d xorl %ecx, %ecx
0000000100000f6f movl %eax, -0x8(%rbp)
0000000100000f72 movl %ecx, %eax
0000000100000f74 addq $0x10, %rsp
0000000100000f78 popq %rbp
0000000100000f79 retq

Machine and Assembly Code
Data Movement and Arithmetic

Topics

● Architecture/assembly intro
● Data formats
● Data movement
● Arithmetic and logical operations

Computer systems

Computer systems

Let's focus for now on the
single-CPU components

von Neumann architecture

CPUALU

Register
File

Main Memory

PC

von Neumann architecture

CPUALU

Register
File

Main Memory

PC

1. Fetch

2. Decode

3. Execute

Machine code

● Machine code
– Variable-length binary encoding of opcodes and operands
– Program is stored in memory along with data
– Specific to a particular CPU architecture (e.g., x86-64)
– Looks very different than the original C code!

int add (int num1, int num2)
{
 return num1 + num2;
}

0000000000400606 <add>:
 400606: 55
 400607: 48 89 e5
 40060a: 89 7d fc
 40060d: 89 75 f8
 400610: 8b 55 fc
 400613: 8b 45 f8
 400616: 01 d0
 400618: 5d
 400619: c3

Machine code

● Machine instructions are specified by an instruction set
architecture (ISA)
– x86-64 (x64) is the current dominant workstation/server architecture

● ARM is used in embedded and mobile markets
● POWER is used in the high-performance market (supercomputers!)
● RISC-V is used in CPU research (and is growing in the industrial market)

– x86-64 has an enormous, complex instruction set
● Lots of legacy features and support for previous ISAs
● We’ll learn a bit of it now, then later focus on a simplified form called Y86

0000000000400606 <add>:
 400606: 55
 400607: 48 89 e5
 40060a: 89 7d fc
 40060d: 89 75 f8
 400610: 8b 55 fc
 400613: 8b 45 f8
 400616: 01 d0
 400618: 5d
 400619: c3

Assembly code

● Assembly code: human-readable form of machine code
– Each indented line of text represents a single machine code instruction

● Two main x86-64 formats: Intel and ATT (we'll use the latter)
● Use "#" to denote comments (extends to end of line)

– Generated from C code by compiler (not a simple process!)
– Disassemblers like objdump can extract assembly from an executable

– Understanding assembly helps you to debug, optimize, and secure
your programs

0000000000400606 <add>:
 400606: 55 push %rbp
 400607: 48 89 e5 mov %rsp,%rbp
 40060a: 89 7d fc mov %edi,-0x4(%rbp)
 40060d: 89 75 f8 mov %esi,-0x8(%rbp)
 400610: 8b 55 fc mov -0x4(%rbp),%edx
 400613: 8b 45 f8 mov -0x8(%rbp),%eax
 400616: 01 d0 add %edx,%eax
 400618: 5d pop %rbp
 400619: c3 retq

opcode operands

Assembly code

● Assembly provides low-level access to machine
– Program counter (PC) tracks current instruction

● Like a bookmark; also referred to as the instruction pointer (IP)

– Arithmetic logic unit (ALU) executes opcode of instructions
● Today, we'll focus on data movement and arithmetic opcodes

– Register file & main memory store operands
● Registers are faster but main memory is larger

0000000000400606 <add>:
 400606: 55 push %rbp
 400607: 48 89 e5 mov %rsp,%rbp
 40060a: 89 7d fc mov %edi,-0x4(%rbp)
 40060d: 89 75 f8 mov %esi,-0x8(%rbp)
 400610: 8b 55 fc mov -0x4(%rbp),%edx
 400613: 8b 45 f8 mov -0x8(%rbp),%eax
 400616: 01 d0 add %edx,%eax
 400618: 5d pop %rbp
 400619: c3 retq

opcode operands

CPU
ALU

Register
File

Main Memory

PC

Registers
● General-purpose

– AX: accumulator
– BX: base
– CX: counter
– DX: address
– SI: source index
– DI: dest index

● Special
– BP: base pointer
– SP: stack pointer
– FLAGS: status info

● "Condition codes" in CS:APP

– IP: instruction pointer
● This is the PC on x86-64

eXX = lower 32-bits (e.g., eax)
rXX = full 64 bits (e.g., rax)

Operand types

● Immediate
– Operand value embedded in instruction itself
– Extends the size of the instruction by the width of the value
– Written in assembly using “$” prefix (e.g., $42 or $0x1234)

● Register
– Operand stored in register file
– Accessed by register number
– Written in assembly using name and “%” prefix (e.g., %eax or %rsp)

● Memory
– Operand stored in main memory
– Accessed by effective address calculated from instruction components
– Written in assembly using a variety of addressing modes

Memory addressing modes

● Absolute: addr
– Effective address: addr

● Indirect: (reg)
– Effective address: R[reg]

● Base + displacement: offset(reg)
– Effective address: offset + R[reg]

● Indexed: offset(regbase, regindex)
– Effective address: offset + R[regbase] + R[regindex]

● Scaled indexed: offset(regbase, regindex, s)
– Effective address: offset + R[regbase] + R[regindex] ∙ s

– Scale (s) must be 1, 2, 4, or 8

R[reg] = value of register reg

useful for
pointers!

useful for
arrays!

(also, note that
offset and reg

base

are optional here)

Exercise

● Given the following machine status, what is the value of the
following assembly operands? (assume 32-bit memory locations)

– $42

– $0x10

– %rax

– 0x104

– (%rax)

– 4(%rax)

– 2(%rax, %rdx)

– (%rax, %rdx, 4)

 Memory
Address Value
0x100 0xFF
0x104 0xAB
0x108 0x13

 Registers
Name Value
%rax 0x100
%rdx 0x2

Data sizes

● Historical artifact: "word" in x86 is 16 bits
– 1 byte (8 bits) = "byte" (b suffix)

– 2 bytes (16 bits) = "word" (w suffix)

– 4 bytes (32 bits) = "double word" (l suffix)

– 8 bytes (64 bits) = "quad word" (q suffix)

● Often, a “class” of instructions will perform similar jobs, but on
different sizes of data
– There are no “types” in assembly code
– Thus, instruction suffixes and operand sizes must match!
– E.g., movq $1, %rax is valid but movq $1, %eax is not

Data movement

● Primary data movement instruction: "mov"
– Copies data from first operand to second operand

● E.g., movq $1, %rax will set the value of RAX to 1
– movb, movw, movl, movq, movabsq

● Zero-extension variant: "movz"
– movzbw, movzbl, movzwl, movzbq, movzwq

– Note lack of movzlq; just use movl, which sets higher 32-bits to zero

● Sign-extension variant: "movs"
– movsbw, movsbl, movswl, movsbq, movswq, movslq

byte-to-word

x86-64 addresses

● Addresses in x86-64 are always 32 or 64 bits
– Thus, the registers used to calculate the effective

address of a memory operand must be 32 or 64 bits
● E.g., movw %ax, (%ebp) is valid

● E.g., movw %ax, (%rbp) is valid
● E.g., movw %ax, %rbp is not valid!

– This does NOT mean that the instruction will load or
store 32/64 bits from/to memory

● The size of data moved is determined by the instruction suffix
● Memory locations have no “type” in assembly/machine code

Stack management

● The system stack holds 8-byte (quadword) slots, growing
downward from high addresses to low addresses
– Stack Pointer (SP) register stores address of "top" of stack

● i.e., a pointer to the last value pushed (lowest address)
● On x86-64, it is %rsp b/c addresses are 64 bits

– pushq <reg> instruction
● Subtract 8 from stack pointer
● Store value of <reg> at stack top

– popq <reg> instruction
● Retrieve value at current stack top (%rsp)

– Save value in the given register
● Increment stack pointer by 8

0

static code

static data

heap

stack

400000

601000

(randomized)

≈ 7fff00000000

(randomized)

≈ 1000000

SP

Exercise

● Given the following register state, what will the values of the
registers be after the following instruction sequence?
– pushq %rax

– pushq %rcx

– pushq %rbx

– pushq %rdx

– popq %rax

– popq %rbx

– popq %rcx

– popq %rdx

 Registers
Name Value
%rax 0xAA
%rbx 0xBB
%rcx 0xCC
%rdx 0xDD

Arithmetic operations

Exercise

 Registers
Name Value
%rax 0x12
%rbx 0x56
%rcx 0x02
%rdx 0xF0

What are the values of the
destination registers after each of the
following instructions executes in
sequence?

addq %rax, %rax
subq %rax, %rbx
imulq %rcx, %rax
andq %rbx, %rdx
shrq $4, %rdx

Exercise

What does the following instruction do
if %rax = 0x100?

leaq (%rax, %rax, 2), %rax

Note: leaq does not actually
read/write memory!

Hand-writing x86_64 assembly

● Minimal template (returns 0; known to work on stu):

● Save in .s file and build with gcc as usual (don’t use “-c” flag)
– Run program and view return value in bash with “echo $?”

● Use gdb to trace execution
– start: begin execution and pause at main

– disas: print disassembly of current function

– ni: next instruction (step over function calls)

– si: step instruction (step into function calls)

– p/x $rax: print value of RAX (note “$” instead of “%”)

– info registers: print values of all registers

.globl main
main:

 movq $0, %rax # your code goes here

 ret

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

