CS 261 Fall 2018

Mike Lam, Professor

DURING A COMPETITION, I TOLD THE PROGRAMMERS ON OUR TEAM THAT $e^{\pi}-\pi$ WAS A STANDARD TEST OF FLOATINGPOINT HANDLERS -- IT WOULD COME OUT TO 20 UNLESS THEY HAD ROUNDING ERRORS.

https://xkcd.com/217/

Floating-Point Numbers

Floating-point

- Topics
- Binary fractions
- Floating-point representation
- Conversions and rounding error

Binary fractions

- Now we can store integers
- But what about general real numbers?
- Extend positional binary integers to store fractions
- Designate a certain number of bits for the fractional part
- These bits represent negative powers of two
- (Just like fractional digits in decimal fractions!)

$$
\begin{aligned}
& \underbrace{}_{4} \underbrace{}_{1} \cdot \underbrace{}_{1 / 2} \underbrace{}_{1 / 4} \underbrace{}_{1 / 8} \\
& 4+1+0.5+0.125=5.625
\end{aligned}
$$

Another problem

- For scientific applications, we want to be able to store a wide range of values
- From the scale of galaxies down to the scale of atoms
- Doing this with fixed-precision numbers is difficult
- Even signed 64-bit integers
- Perhaps allocate half for whole number, half for fraction
- Range: $\sim 2 \times 10^{-9}$ through $\sim 2 \times 10^{9}$

Floating-point demonstration using Super Mario 64:
https://www.youtube.com/watch?v=9hdFG2GcNuA

Floating-point numbers

- Scientific notation to the rescue!
- Traditionally, we write large (or small) numbers as $x \cdot 10 e$
- This is how floating-point representations work
- Store exponent and fractional parts (the significand) separately
- The decimal point "floats" on the number line
- Position of point is based on the exponent

$$
\begin{array}{rl}
0.0123 \times 10^{2} \\
0.123 \times 10^{1} \\
1.23 & 1.23 \times 10^{0} \\
12.3 \times 10^{-1} \\
123.0 \times 10^{-2}
\end{array}
$$

Floating-point numbers

- However, computers use binary
- So floating-point numbers use base 2 scientific notation ($x \cdot 2^{e}$)
- Fixed width field
- Reserve one bit for the sign bit (0 is positive, 1 is negative)
- Reserve n bits for biased exponent (bias is $2^{n-1}-1$)
- Avoids having to use two's complement
- Use remaining bits for normalized fraction (implicit leading 1)
- Exception: if the exponent is zero, don't normalize

Exponent (8-7=1)

Value $=(-1)^{s} \times 1 . f \times 2^{E}$

Aside: Offset binary

- Alternative to two's complement
- Actual value is stored value minus a constant K (in FP: $2^{n-1}-1$)
- Also called biased or excess representation
- Ordering of actual values is more natural

Example range (int8_t):	Binary		Unsigned	Two's C	Offset-127
	0000	0000	0	0	-127
	0000	0001	1	1	-126

	0111	1110	126	126	-1
	0111	1111	127	127	0
	1000	0000	128	-128	1
	1000	0001	129	-127	2

	1111	1110	254	-2	127
	1111	1111	255	-1	128

Floating-point numbers

Not evenly spaced! (as integers are)
Consider these examples:

$$
\begin{array}{rl}
1.00000 \times 2^{0} & 1.00001 \times 2^{0} \\
1.00000 \times 2^{100} \rightarrow & 1.00001 \times 2^{100}
\end{array}
$$

Adding a least-significant digit adds more value with a higher exponent than with a lower exponent

Floating-point numbers

Representable values for 6-bit floating-point format. There are $\mathrm{k}=3$ exponent bits and $\mathrm{n}=2$ fraction bits. The bias is 3 .

Description	Bit representation	Exponent			ггасыои		varue		
		e	E	2^{E}	f	M	$2^{E} \times M$	V	Decimal
Zero	00000000	0	-6	$\frac{1}{64}$	$\frac{0}{8}$	$\frac{0}{8}$	$\frac{0}{512}$	0	0.0
Smallest positive	00000001	0	-6	$\frac{1}{64}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{512}$	$\frac{1}{512}$	0.001953
	00000010	0	-6	$\frac{1}{64}$	$\frac{2}{8}$	$\frac{2}{8}$	$\frac{2}{512}$	$\frac{1}{256}$	0.003906
"denormal" numbers provide gradual underflow	00000011 :	0	-6	$\frac{1}{64}$	$\frac{3}{8}$	$\frac{3}{8}$	3 512	$\frac{3}{512}$	0.005859
near zero Largest denormalized	00000111	0	-6	$\frac{1}{64}$	$\frac{7}{8}$	$\frac{7}{8}$	$\frac{7}{512}$	$\frac{7}{512}$	0.013672
Smallest normalized	00001000	1	-6	$\frac{1}{64}$	$\frac{0}{8}$	$\frac{8}{8}$	$\frac{8}{512}$	$\frac{1}{64}$	0.015625
	00001001	1	-6	$\frac{1}{64}$	$\frac{1}{8}$	$\frac{9}{8}$	$\frac{9}{512}$	$\frac{9}{512}$	0.017578
values < 1	00110110	6	-1	$\frac{1}{2}$	$\frac{6}{8}$	$\frac{14}{8}$	$\frac{14}{16}$	$\frac{7}{8}$	0.875
	00110111	6	-1	$\frac{1}{2}$	$\frac{7}{8}$	$\frac{15}{8}$	$\frac{15}{16}$	$\frac{15}{16}$	0.9375
One	00111000	7	0	1	$\frac{0}{8}$	$\frac{8}{8}$	$\frac{8}{8}$	1	1.0
	00111001	7	0	1	$\frac{1}{8}$	$\frac{9}{8}$	$\frac{9}{8}$	$\frac{9}{8}$	1.125
values > 1	00111010	7	0	1	$\frac{2}{8}$	$\frac{10}{8}$	$\frac{10}{8}$	$\frac{5}{4}$	1.25
	01110110	14	7	128	$\frac{6}{8}$	$\frac{14}{8}$	$\frac{1792}{8}$	224	224.0
Largest normalized	01110111	14	7	128	$\frac{7}{8}$	$\frac{15}{8}$	$\frac{1920}{8}$	240	240.0
Infinity	01111000	-	-	-	-	-	-	∞	

Figure 2.35 Example nonnegative values for 8-bit floating-point format. There are $k=4$ exponent bits and $n=3$ fraction bits. The bias is 7 .

Floating-point numbers

1. Normalized

s	$\neq 0 \& \neq 255$	f

2. Denormalized

s	0	0	0	0	0	0	0	0

3a. Infinity

s	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

3b. NaN

$\left.\begin{array}{l|l|l|l|l|l|l|l}\hline s & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right] \quad$| | |
| :--- | :--- |

NaNs

- NaN = "Not a Number"
- Result of 0/0 and other undefined operations
- Propagate to later calculations
- Quiet and signaling variants (qNaN and sNaN)
- Allowed a neat trick during my dissertation research:

Floating-point issues

- Rounding error is the value lost during conversion to a finite significand
- Machine epsilon gives an upper bound on the rounding error
- (Multiply by value being rounded)
- Can compound over successive operations
- Lack of associativity caused by intermediate rounding
- Prevents some compiler optimizations
- Cancelation is the loss of significant digits during subtraction
- Can magnify error and impact later operations

```
double a = 100000000000000000000.0;
double b = -a;
double c = 3.14;
if (((a+b) + c) == (a + (b + c))) {
    printf ("Equal!\n");
} else {
    printf ("Not equal!\n");
}
```

2.491264	(7)	1.613647	(7)
-2.491252	(7)	-1.613647	(7)
0.000012	(2)	0.000000	(0)

(5 digits cancelled)
(all digits cancelled)

Floating-point issues

- Many numbers cannot be represented exactly, regardless of how many bits are used!
- E.g., $0.1_{10} \rightarrow 0.00011001100110011001100_{2} \ldots$
- This is no different than in base 10
- E.g., 1/3 = 0.333333333 ...
- If the number can be expressed as a sum of negative powers of the base, it can be represented exactly
- Assuming enough bits are present

Floating-point standards

Name	Bits	Exp	Sig	Dec	M_Eps
IEEE half	16	5	$10+1$	3.311	$9.77 e-04$
IEEE single	32	8	$23+1$	7.225	$1.19 e-07$
IEEE double	64	11	$52+1$	15.955	$2.22 e-16$
IEEE quad	128	15	$112+1$	34.016	$1.93 e-34$

NOTES:

- Sig is <explicit>[+<implicit>] bits
- Dec $=\log _{10}(2$ sig $)$
- M_Eps (machine epsilon) $=b(-(p-1))=b(1-p)$
(upper bound on relative error when rounding to 1)

Floating-point standards

IEEE Floating-Point Numbers
Value is: $(-1)^{\text {sign }} \times 1 . f r a c \times 2^{\exp }$

Conversion and rounding

Rounding

Mode	$\$ 1.40$	$\$ 1.60$	$\$ 1.50$	$\$ 2.50$	$\$-1.50$
Round-to-even	$\$ 1$	$\$ 2$	$\$ 2$	$\$ 2$	$\$-2$
Round-toward-zero	$\$ 1$	$\$ 1$	$\$ 1$	$\$ 2$	$\$-1$
Round-down	$\$ 1$	$\$ 1$	$\$ 1$	$\$ 2$	$\$-2$
Round-up	$\$ 2$	$\$ 2$	$\$ 2$	$\$ 3$	$\$-1$

Figure 2.37 Illustration of rounding modes for dollar rounding. The first rounds to a nearest value, while the other three bound the result above or below.

Round-to-even: round to nearest, on ties favor even numbers to avoid statistical biases
In binary, to round to bit i, examine bit $i+1$:

- If 0 , round down
- If 1 and any of the bits following are 1, round up
- Otherwise, round up if bit i is 1 and down if bit i is 0

```
10.00011 -> 10.00 (down)
10.00100 -> 10.00 (tie, round down)
10.10100 -> 10.10 (tie, round down)
10.01100 -> 10.10 (tie, round up)
10.11100 -> 11.00 (tie, round up)
10.00110 -> 10.01 (up)
```


Floating-point issues

- Single vs. double precision choice
- Theme: system design involves tradeoffs
- Single precision arithmetic is faster
- Especially on GPUs (vectorization \& bandwidth)
- Double precision is more accurate
- More than twice as accurate!
- Which do we use?
- And how do we justify our choice?
- Does the answer change for different regions of a program?
- Does the answer change for different periods during execution?
- This is an open research question (talk to me if you're interested!)

Manual conversions

- To fully understand how floating-point works, it helps to do some conversions manually
- This is unfortunately a bit tedious and very error-prone
- There are some general guidelines that can help it go faster
- You will also get faster with practice
- Use the fp.c utility (posted on the resources page) to generate practice problems and test yourself!
- Compile: gcc -o fp fp.c
- Run: ./fp <exp_len> <sig_len>
- It will generate all positive floating-point numbers using that representation
- Choose one and convert the binary to decimal or vice versa

01011000	58	normal:	sign=0	$e=11$	bias=7	$\mathrm{E}=4$	$2^{\wedge} \mathrm{E}=16$	$f=0 / 8$	$M=8 / 8$	$2^{\wedge} \mathrm{E}^{*} \mathrm{M}=128 / 8$	val=16.000000
01011001	59	normal:	sign=0	$e=11$	bias=7	$\mathrm{E}=4$	$2^{\wedge} \mathrm{E}=16$	$\mathrm{f}=1 / 8$	$\mathrm{M}=9 / 8$	$2^{\wedge} \mathrm{E}^{*} \mathrm{M}=144 / 8$	val=18.000000
01011010	5 a	normal:	sign=0	$e=11$	bias=7	$\mathrm{E}=4$	$2^{\wedge} \mathrm{E}=16$	$\mathrm{f}=2 / 8$	$\mathrm{M}=10 / 8$	2^E*M=160/8	val=20.000000
01011011	5b	normal:	sign=0	$e=11$	bias=7	$\mathrm{E}=4$	$2^{\wedge} \mathrm{E}=16$	$f=3 / 8$	$\mathrm{M}=11 / 8$	2^E*M=176/8	val=22.000000

Textbook's technique

e : The value represented by considering the exponent field to be an unsigned integer
E : The value of the exponent after biasing
2^{E} : The numeric weight of the exponent
f : The value of the fraction
M : The value of the significand
$2^{E} \times M$: The (unreduced) fractional value of the number
V : The reduced fractional value of the number
Decimal: The decimal representation of the number

If this technique works for you, great!
If not, here's another perspective...

Converting floating-point numbers

- Floating-point \rightarrow decimal:

Note:
bias $=2^{n-1}-1$

- 1) Sign bit (s):
- Value is negative iff set
- 2) Exponent (exp):
- All zeroes: denormalized (E = 1-bias)
- All ones: NaN unless f is zero (which is infinity) - DONE!
- Otherwise: normalized ($\mathrm{E}=$ exp-bias)
- 3) Significand (f):
- If normalized: $\mathrm{M}=1+f / 2^{m}$ (where m is the $\#$ of fraction bits)
- If denormalized: $\mathrm{M}=f / 2^{m}$ (where m is the $\#$ of fraction bits)
- 4) Value $=(-1)^{s} \times \mathrm{M} \mathrm{x}^{\mathrm{E}}$

Converting floating-point numbers

- Decimal \rightarrow floating-point (normalized only)
- 1) Convert to unsigned fractional binary format
- Set sign bit

Note:
bias $=2^{n-1}-1$
(where n is the
\# of \exp bits)

- 2) Normalize to 1.xxxxxx
- Keep track of how many places you shift left (negative for shift right)
- The "xxxxxx" bit string is the significand (pad with zeros on the right)
- If there aren't enough bits to store the entire fraction, the value is rounded
- 3) Encode resulting binary/shift offset (E) using bias representation
- Add bias and convert to unsigned binary
- If the exponent cannot be represented, result is zero or infinity

Example

(4-bit exp,
3-bit frac):

$$
\begin{aligned}
& 2.75(\mathrm{dec}) \rightarrow 10.11(\text { bin }) \rightarrow 1.011 \times 2^{1}(\text { bin }) \rightarrow 01000011 \\
& \text { Bias }=2^{4-1}-1=7
\end{aligned}
$$

Example (textbook pg. 119)

$$
\begin{aligned}
& 12345_{10} \rightarrow 11000000111001_{2} \\
& \rightarrow 1.1000000111001_{2} \times 2^{13} \\
& \exp =13+127(\text { bias })=140=10001100_{2} \\
& \rightarrow 01000110010000001110010000000000
\end{aligned}
$$

(note the shared bits that appear in all three representations)

Exercises

- What are the values of the following numbers, interpreted as floating-point numbers with a 3-bit exponent and 2-bit significand?
- What about a 2-bit exponent and a 3-bit significand?

001100
 011001

- Convert the following values to a floating-point value with a 4-bit exponent and a 3-bit significand. Write your answers in hex.
-3
0.125
120

