CS 261
Fall 2018

Mike Lam, Professor

e ,306... 1,307, ..

BasA

5D
/F—m

-

.0 . 32,767...-32,78...

275

=]

oo=32,767...-32,7%6 ...

2L

=5

Integer Encodings

https://xkcd.com/571/

* Topics
- C Iinteger data types
— Unsigned encoding
- Signed encodings
- Conversions

I Integer data types in C99

C data type Minimum Maximum
|signed] char —127 127
unsigned char 0 255
short —32,767 32,767
unsigned short 0 65,535
int —32,767 32,767
unsigned 0 65,535
long —2,147,483,647 2,147,483,647
unsigned long 0 4,294,967,295
int32_t —2,147,483,648 2,147,483,647
uint32_t 0 4,294,967,295
int64_t —9,223,372,036,854,775,808 9,223,372,036,854,775,807
uint64_t 0 18,446,744,073,709,551,615

1 byte

2 bytes

2 bytes

4 bytes

4 bytes

8 bytes

Figure 2.11 Guaranteed ranges for C integral data types. The C standards require
that the data types have at least these ranges of values.

I Integer data types on stu

All sizes in bytes; sizes in red are larger than mandated by C99

char 1 int8_t 1
unsigned char 1 uint8_t 1
bool 1

short 2
unsigned short 2 intl6_t 2
uintl6é_t 2

int 4
unsigned int 4 int32_t 4
uint32_t 4

long 8
unsigned long 8 int64_t 8
long long 8 uinté4_t 8
unsigned long long 8 size_t 8

I Unsigned integer encoding

* Bit i represents the value 2’

- Bits typically written from most to least significant (i.e., 2° 2° 2* 2°
— This is the same encoding we saw on Tuesday!
- No representation of negative numbers

1 = 1= 11-2° = [0001]
5 = +1= 2224 00+ 1:20=[0101]
11=8+ 2+1=12%+ 2" +12'+1:2°=[1011]

15=8+4+2+1=1-22+1-22+1-2'+1-2°=[1111]

I Unsigned integer encoding

 Textbook’s notation

— Each bar represents a bit

— Add together bars to represent the contributions of each
bit value to the overall value

Figure 2.12 2i_g

Unsigned number = _
examples for w =4, 2= -

When bit i in the binary 2'=2

representation has value 1, 20 _ { '

it contributes 2' to the

"CI:' 'II 2 3 4567 8 91011 1213141516

value.

[0001]
[0101]
[1011]
[1111]

I Signed integer encodings

* Sigh magnitude

- Most natural and intuitive
* Ones’ complement

- Helps with two’s complement conversions
* Two’'s complement

- Cleanest arithmetic but not intuitive
- Most modern signed integer types use this!

I Sign magnitude

e Sigh magnitude
- Interpret most-significant bit as a sign bit

- Interpret remaining bits as a normal unsigned int (the magnitude)

- Disadvantages:

* Two zeros: -0 and +0 [1000 and 0000]

* Less useful for arithmetic because the sign bit has no relationship with
the magnitude--cannot use unsigned arithmetic logic!

0 011 =3 0 111 (7)
1011 = -3 1 011 (-3)
0 111 = 7 2 010

I Caution: language technicalities

 Ones’ complement and two’s complement are both an
operation and an encoding

- e.g., “perform two’s complement” vs “the number is stored in two’s
complement”

* The operation represents the action necessary to negate a
number in that encoding.

- e.g., performing two’s complement (ones’ complement and add one)
negates a number in two’s complement encoding

* If you have a value in a particular encoding:

- If the sign bit is not set, it's a “regular’ positive number
- If it is set, perform the operation to recover the positive value

I Ones’ complement

* Ones’ complement

- Invert all the bits (~ operator in C) to negate
- Still have two representations of zero (1111 and 0000)
- Also, less useful for arithmetic than two’s complement

- However, there is a neat trick: to perform two’s complement, just
do ones’ complement then add one

Ex:5=0101 - (one’'s comp.) - 1010 - (add one) - 1011 =-5 (-8 +2 + 1)

Aside: Why does this work? The sum of a number x and its ones’ complement is all
ones (or 2N-1 where N is the number of bits), so its ones' complement can be
expressed as 2M-1 - x. Because taking the two’s complement of x is equivalent to
subtracting x from 2V, if we add one to the ones' complement the results are equal:

(2N-1-x)+1=2N-x

I Two’s complement encoding

 Two’'s complement

- Take ones’ complement then add one to negate

 Equivalently: subtract number from 2" where N is the number of bits
- Implication: half of all values as negative

* One more negative number than positive numbers
- Positive numbers “wrap around” to negative ones halfway through

2’s Comp.

1111

1001
1000
0111

0001
010]0]0)

Unsigned

15

9
8
7

(O

4+ =1 _

o

Two's
complement

_—»

negative
_21'.-*—1

numbers

»

i EF'-"

4 2" Unsigned

I Comparison

* We’'ll see one more signed integer encoding next week:
“offset binary” / “biased” / “excess”

- For now, here’s a comparison (for 1-byte integers):

Binary Unsigned Sign Mag Ones’ C Two’'s C
1111 1111 255 -127 -0 -1
1111 1110 254 -126 -1 -2
1000 0001 129 -1 -126 -127
1000 0000 128 -0 .-y -128
0111 1111 127 127 127 127 0
0111 1110 126 126 126 126 -1
OPO00 0001 1 1 1 1 -126
OO0 00006 0] 0] 0] 0) -127

Two's
complement

w1

numbers
Binary Unsigned Sign Mag Ones’ C
1111 1111 255 -127 -0
1111 1110 254 -126 -1
1000 0001 129 -1 -126
1000 0000 128 --1z2¢ -128 A
0111 1111 127 127 127
0111 1110 126 126 126
0000 0001 1 1 1
0000 0060 0] 0] 0]

0
_2#'1{

negative —

2“‘

0

2" Unsigned

Two’'s C Offset-127
-1 128
-2 127
-127 2
-128 1
127 0]
126 -1
1 -126
0] -127

I Two’s complement encoding

 Alternate interpretation: value of most significant bit is negated
- l.e., start at most negative number and build back up towards zero

Figure 2.12

Unsigned number
examples for w =4,
When bit i in the binary
representation has value 1,
it contributes 2’ to the
value.

[0001]
[0101]
[1011]
[1111]

Figure 2.16

Comparing unsigned
and two’s-complement
representations for w = 4.
The weight of the most
significant bit is —8 for
two's complement and +8

for unsigned, yielding a net ==
difference of 16. [1011] -.1
1) D _-D

| +16

I Two’s complement encoding

* Two’s complement advantage: uses unsigned arithmetic logic
— (ignore carries out of the sign bit for now)

- Ex:5-3=5+(-3) =0101 + 1101 = 0010 (2)
- Ex:1-3=1+(-3)=0001 + 1101 = 1110 (-2)
- Ex:-2-3=(-2)+(-3) =1110 + 1101 = 1011 (-5)

0011 = 3 0111 (7)
1100 1101 (-3)
1101 = -3 0100 (4)

0111 = 7

I Integer representations

e Information = Bits + Context
- What does “1011" mean? It depends!

Unsigned.: 11
Sign magnitude: -3
Ones' complement: -4
Two's complement. -5

I cConversions

Smaller unsigned - larger unsigned 0101 (5) - 0000 0101 (5)
- Safe; zero-extend to preserve value

Smaller two’s comp. - larger two’s comp. 1101 (-3) - 1111 1101 (-3)
- Safe; sign-extend to preserve value

0101 (5) - 0101 (5)
0011 0101 (53) - 0101 (5)

Larger — smaller (unsigned or two’s comp.)
- Overflow if new type isn’t large enough to fit (truncate)

Unsigned — two's comp. 1101 (32) - 1201 (-2)

— Overflow if first bit is non-zero (otherwise, no change)

Two’s comp. - unsigned 101 (5) - 0101 (5)

- Overflow if value is negative (otherwise, no change) 1101 (-2) -~ 1101 (13)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

