

CS 261
Fall 2018

Mike Lam, Professor

Binary Information

3735928559
(convert to hex)

Binary information

● Topics
– Base conversions (bin/dec/hex)
– Data sizes
– Byte ordering
– Character and program encodings
– Bitwise operations

Core theme

Information = Bits + Context

Why binary?

● Computers store information in binary encodings
– 1 bit is the simplest form of information (on / off)
– Minimizes storage and transmission errors

● To store more complicated information, use more bits
– However, we need context to understand them
– Data encodings provide context
– For the next two weeks, we will study encodings
– First, let’s become comfortable working with binary

Base conversions

● Binary encoding is base-2: bit i represents the value 2i

– Bits typically written from most to least significant (i.e., 23 22 21 20)

1 = 1 = 0∙23 + 0∙22 + 0∙21 + 1∙20 = [0001]

5 = 4 + 1 = 0∙23 + 1∙22 + 0∙21 + 1∙20 = [0101]

11 = 8 + 2 + 1 = 1∙23 + 0∙22 + 1∙21 + 1∙20 = [1011]

15 = 8 + 4 + 2 + 1 = 1∙23 + 1∙22 + 1∙21 + 1∙20 = [1111]

Binary to decimal:
Add up all the powers of two (memorize powers of two to make this go faster!)

Decimal to binary:
Find highest power of two and subtract to find the remainder
Repeat above until the remainder is zero
Every power of two become 1; all other bits are 0

11-8=3 3-2=1 1-1=0

15-8=7 7-4=3 3-2=1 1-1=0

5-4=1 1-1=0

1-1=0

Remainder system

● Quick method for decimal → binary conversions
– Repeatedly divide decimal number by two until zero,

keeping track of remainders (either 0 or 1)
– Read in reverse to get binary equivalent

11
5 r 1
2 r 1 => 1011 (8 + 2 + 1)
1 r 0
0 r 1

Base conversions

● Hexadecimal encoding is base-16 (often prefixed with “0x”)
– Converting between hex and binary is easy

● Each digit represents 4 bits; just substitute digit-by-digit or in groups of four!

– You should memorize these equivalences

Dec Bin Hex

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

Dec Bin Hex

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Fundamental data sizes

● 1 byte = 2 hex digits (= 2 nibbles!) = 8 bits

● Machine word = size of an address
– (i.e., the size of a pointer in C)
– Early computers used 16-bit addresses

● Could address 216 bytes = 64 KB

– Now 32-bit (4 bytes) or 64-bit (8 bytes)
● Can address 4GB or 16 EB

128

27

64

26

32

25

16

24

8

23

4

22

2

21

1

20

1 byte:

1 hex digit (Y) 1 hex digit (Z)

Prefix Bin Dec

Kilo 210 ~103

Mega 220 ~106

Giga 230 ~109

Tera 240 ~1012

Peta 250 ~1015

Exa 260 ~1018

(most significant) (least significant)

Value of
byte 0xYZ
is 16Y + Z

Byte ordering

● Big endian: store higher place values at lower addresses
– Most-significant byte (MSB) to least-significant byte (LSB)
– Similar to standard way to write hex (implied with “0x” prefix)

● Little endian: store lower place values at lower addresses
– Least-significant byte (LSB) to most-significant byte (MSB)
– Default byte ordering on most Intel-based machines

 low high
 addr addr

0x11223344 in big endian: 11 22 33 44
0x11223344 in little endian: 44 33 22 11

Byte ordering examples

● Big endian: most significant byte first (MSB to LSB)
● Little endian: least significant byte first (LSB to MSB)

 low high
0x11223344 in big endian: 11 22 33 44
0x11223344 in little endian: 44 33 22 11

Decimal: 1
16-bit big endian: 00000000 00000001 (hex: 00 01)
16-bit little endian: 00000001 00000000 (hex: 01 00)

Decimal: 19 (16+2+1)
16-bit big endian: 00000000 00010011 (hex: 00 13)
16-bit little endian: 00010011 00000000 (hex: 13 00)

Decimal: 256
16-bit big endian: 00000001 00000000 (hex: 01 00)
16-bit little endian: 00000000 00000001 (hex: 00 01)

Character encodings

● ASCII ("American Standard Code for Information Interchange")

– 1-byte code developed in 1960s
– Limited support for non-English characters

● Unicode
– Multi-byte code developed in 1990s
– "All the characters for all the writing systems of the world"
– Over 136,000 characters in latest standard
– Fixed-width (UTF-16 and UTF-32) and variable-width (UTF-8)

UTF-8

Program encodings

● Machine code
– Binary encoding of opcodes and operands
– Specific to a particular CPU architecture (e.g., x86_64)

int add (int num1, int num2)
{
 return num1 + num2;
}

0000000000400606 <add>:
 400606: 55 push %rbp
 400607: 48 89 e5 mov %rsp,%rbp
 40060a: 89 7d fc mov %edi,-0x4(%rbp)
 40060d: 89 75 f8 mov %esi,-0x8(%rbp)
 400610: 8b 55 fc mov -0x4(%rbp),%edx
 400613: 8b 45 f8 mov -0x8(%rbp),%eax
 400616: 01 d0 add %edx,%eax
 400618: 5d pop %rbp
 400619: c3 retq

Bitwise operations

● Basic bitwise operations
– & (and) | (or) ^ (xor)

● Not boolean algebra!
– && (and) || (or) ! (not)

– 0 (false) non-zero (true)

● Important properties:
– x & 0 = 0

– x & 1 = x

– x | 0 = x

– x | 1 = 1

– x ^ 0 = x

– x ^ x = ~x

– x ^ x = 0

& 0 1

0 0 0

1 0 1

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

AND OR XOR

● Commutative:
 x & y = y & x
 x | y = y | x
 x ^ y = y ^ x

● Associative:
 (x & y) & z = x & (y & z)
 (x | y) | z = x | (y | z)
 (x ^ y) ^ z = x ^ (y ^ z)

● Distributive:
 x & (y | z) = (x & y) | (x & z)
 x | (y & z) = (x | y) & (x | z)

Bitwise operations

● Bitwise complement (~) - “flip the bits”
– ~0000 = 1111 (~0 = 1) ~1010 = 0101 (~0xA = 0x5)

– Also called ones' complement (useful in next class)
● Left shift (<<) and right shift (>>)

– Equivalent to multiplying (<<) or dividing (>>) by two
– Left shift: 0110 << 1 = 1100 1 << 3 = 8

– Logical right shift (fill zeroes): 1100 >> 2 = 0011

– Arithmetic right shift (fill most sig. bit): 1100 >> 2 = 1111
 (but only if unsigned) 0100 >> 2 = 0001

On stu:

 int: 0f000000 >> 8 = 000f0000 (arithmetic)
 int: ff000000 >> 8 = ffff0000
uint: 0f000000 >> 8 = 000f0000 (logical)
uint: ff000000 >> 8 = 00ff0000

Masking

● Bitwise operations can extract parts of a binary value
– This is referred to as masking; specify a bit pattern mask to

indicate which bits you want
● Helpful fact: 0xF is all 1’s in binary!

– Use a bitwise AND (&) with the mask to extract the bits
– Use a bitwise complement (~) to invert a mask
– Example: To extract the lower-order 16 bits of a larger value

v, use “v & 0xFFFF”

0xDEADBEEF & 0xFFFF = 0x0000BEEF = 0xBEEF
0xDEADBEEF & 0x0000FFFF = 0x0000BEEF = 0xBEEF
0xDEADBEEF & 0xFFFF0000 = 0xDEAD0000
0xDEADBEEF & ~0xFFFF = 0xDEAD0000
0xDEADBEEF & ~0x0000FFFF = 0xDEAD0000

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

