

CS 261
Fall 2018

Mike Lam, Professor

Getopt and Debugging
(and some C technicalities)

C technicalities

● Precedence is the order in which operators are applied
– Example: 2+3*4 means 2+(3*4) not (2+3)*4
– Multiplication (*) is has higher precedence than addition (+)

● In C, some precedence relationships are non-intuitive
– Member operator (.) is higher than dereference (*)

● *ptr.foo means *(ptr.foo) not (*ptr).foo
● This is partially why “->” is such a useful operator

– Some unary operators (e.g., ++) are higher than dereference (*)
● *ptr++ means *(ptr++) not (*ptr)++
● Use the latter to apply the operator through a dereference

Full precedence list:
http://en.cppreference.com/w/c/language/operator_precedence

http://en.cppreference.com/w/c/language/operator_precedence

C technicalities

● Zero-length arrays are (generally) not allowed

int a[0]; // compiler warning

int b[]; // same as "int b[1];"

● Array names are aliases, not pointers

int c[4]; // c is not (strictly speaking) a pointer

int *d = c; // d is a pointer

– Practically, they behave like constant pointers
– Except that &c == &c[0] (which is not true of d)

● And sizeof(c) is the size (in bytes) of the whole array

c

●

d

C technicalities

● Initializing arrays w/ pointer declaration
– Generally results in a buffer overrun (compiler warning)

 int *a = {1, 2, 3, 4} // buffer overrun!

– Special case for C strings:

 char *s = "hello"; // ok, but read-only

● String "hello" is stored in a read-only section of static data
– Regardless of whether s is local or global

● Pointer s is initialized to point to "hello"
● Read-only strings may be re-used by other portions of code

C technicalities

● The type "void *" denotes a generic pointer
– No information about what it is pointing to
– Must cast it to a specific pointer type before using it

● E.g., (int*)ptr

– This can be very dangerous if we're wrong
– Use it sparingly

● E.g., return value of malloc() where we know the type

C technicalities

● malloc() can fail
– Potential cause: memory leak fills up all available memory
– If malloc fails, it will return NULL
– This will cause a segfault when you try to use the pointer
– You must check for this every time you call malloc
– Find a graceful and informative way to fail

● Printing a message and aborting the program is fine in this course

double *temp_data = (double*)malloc(sizeof(double) * ndays);

if (temp_data == NULL) {
 fprintf(stderr, "ERROR: Cannot allocate storage for temperature data\n");
 exit(EXIT_FAILURE);
}

<code that uses temp_data>

C technicalities

● Memory is uninitialized by default
– You should manually initialize values to useful defaults if you

need to rely on them
– One easy way to do this: memset()

● Set all bytes in a region of memory to a given character
● Often used to "zero out" (set to 0) a structure

– You could also copy from another region with memcpy()
● Inappropriate for strings because it does not append a null terminator

– If on the heap, you can initialize and allocate with calloc()
● Alternative to malloc that will zero out all allocated bytes
● Slower than malloc!

C technicalities

● The C standard does not specify everything about how C
should be compiled
– E.g., integer type sizes
– This allows compiler writers to optimize more highly for a particular

architecture (e.g., struct field alignment)

● Printing a null string pointer is undefined behavior:

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf

Thought exercise
● Write a program that takes command-line

parameters according to the following usage text:

Usage: ./args [options] <filename>

 Valid options:

 -a Print an 'A'

 -b Print a 'B'

Valid commands:

./args file.txt

./args -a file.txt

./args -a -b file.txt

./args -ab file.txt

Invalid commands:

./args

./args -a

./args -c file.txt

What could go wrong?

int main (int argc, char **argv)
{
 // parse options
 for (int i = 0; i < argc; i++) {
 switch (argv[i][1]) {
 case ‘a’: a_flag = true; break;
 case ‘b’: b_flag = true; break;
 default: report_err(); break;
 }
 }

 // get filename
 char *fn = argv[argc-1];
}

Thought exercise
● Write a program that takes command-line

parameters according to the following usage text:

Usage: ./args [options] <filename>

 Valid options:

 -a Print an 'A'

 -b Print a 'B'

Valid commands:

./args file.txt

./args -a file.txt

./args -a -b file.txt

./args -ab file.txt

Invalid commands:

./args

./args -a

./args -c file.txt

What if there's no filename at the end?
What if there are two filenames?
How to handle parameters (e.g., “-n 5”)?
How to handle combined flags (e.g., “-ab”)?
What if there is no argv[i][1]?

int main (int argc, char **argv)
{
 // parse options
 for (int i = 0; i < argc; i++) {
 switch (argv[i][1]) {
 case ‘a’: a_flag = true; break;
 case ‘b’: b_flag = true; break;
 default: report_err(); break;
 }
 }

 // get filename
 char *fn = argv[argc-1];
}

Getopt

● There’s a better way: getopt() and getopt_long()
– The latter enables longer options (e.g., “--help”)

● Useful (and mostly standard now), but we won’t require it in this course

– Basic idea: call getopt() repeatedly
● It will return each of the flags individually even if they are grouped or out of order
● Returns -1 when done

– Need to pass an optstring (list of valid flags as a string)
● E.g., "abc" indicates that "-a", "-b", and "-c" are valid (any any combinations)
● Use a colon to indicate a flag that takes a parameter (e.g., "n:" to allow “-n 4”)

● Global variables
– optarg: pointer to string parameter for flags that take them

– optind: index of next flag (use to check for extra arguments at the end!)

Getopt example

#include <getopt.h>

int main (int argc, char **argv)
{
 // parse options
 int opt;
 while ((opt = getopt(argc, argv, "ab")) != -1) {
 switch (opt) {
 case 'a': a_flag = true; break;
 case 'b': b_flag = true; break;
 default: report_err(); break;
 }
 }

 // check for and get filename
 if (optind != argc-1) {
 report_err();
 return 1;
 }
 char *fn = argv[optind];
}

Much more robust!

Software testing

● Test-Driven Development: write the tests first!
– Popular software engineering technique
– Describe the behavior of correct code

● Write a series of test cases to test individual features
● Make sure you consider edge/corner cases!
● Save these tests in a test suite that is easy to run

– THEN write the code
● Now you have some indication of when you're "done"
● Write more tests as you go if new cases arise

Project tip: don't rely on the provided test suite—devise your own tests!

Debugging

● “It’s 11pm and I just wrote 500 lines of code!”
– “All the functions are there.”
– “I’m done now, right?

● “I should probably run some tests”
– “Just to be sure...”

● “@#$%, it’s not working!”
– “But it looks like it should work...”

Debugging

● A software defect is an error in code that produces incorrect
or undesired behavior
– Colloquially called “bugs”
– Many types: syntax, logic, integration, concurrency
– Many causes: typos, incorrect code, design flaws, ambiguous spec

● Fundamental issue: mismatches between user’s expectations
and machine’s behavior
– Proximate cause (symptom) vs. root cause (defect)
– Debugging is the process of starting from the former and working

towards discovering the latter
– Basically: the process of continually asking “why is this happening?”
– One of the most important practical skills in programming

9 Rules of Debugging

1) Understand the system

2) Make it fail

3) Quit guessing and look

4) Divide and conquer

5) Change one thing at a time

6) Keep an audit trail

7) Check the obvious

8) Get a fresh view

9) If you didn’t fix it, it ain’t fixed

Author: David Agans www.debuggingrules.com

Recommended book
ISBN-13: 978-0814474570

Debugging

● The nature of C makes it possible to explore the kinds of things
we want to explore in CS 261
– However, the power comes at a cost: it is easier to make a mistake!

● Debugging in C will be harder than it was in Java
– The failure point (e.g., segfault location) is usually not where the bug is!

● Main question: Where is the earliest point at which the program
diverges from your expectations?
– Use debug output or a debugger tool to help

● Other useful questions:
– What data type(s) are you dealing with?
– Which memory regions are involved?
– What is the size and lifetime of the variables?

Debuggers

● A debugger (e.g., gdb) is a program that allows you to
examine another program while it is running
– Execute the program step-by-step
– Examine the contents of memory at any point
– Add breakpoints and watchpoints
– Reverse execution to find the root cause

● Debuggers are more useful with extra information
from the compiler
– In gcc, compile with the “-g” option to enable this

– It’s also useful to disable optimization (“-O0”)

Valgrind

● Valgrind is a tool framework for memory analysis
– Most useful tool (and the default) is memcheck, which

searches for memory leaks, uninitialized variables, and
other memory problems

– We use memcheck to check for memory leaks on projects
– You can use it to help find memory bugs
– To run: valgrind <exe-name> <exe-options>

GDB quick reference
gdb ./program - launch GDB on program (include “--tui” for “graphical” interface)

run <args> - begin/restart execution

start <args> - begin/restart execution and pause at main

break <func> - set a breakpoint ("pause here") at the beginning of a function

break <file>:<line> - set a breakpoint at a specific line of code

watch <loc> - pause when a specific variable or memory location changes

continue - resume execution (until a breakpoint, watchpoint, or segfault)

next - run one line of code then pause (skips over function calls)

step - run one line then pause (descends into functions)

print <expr> - print current value of a variable or expression

print /x <expr> - print current value of a variable or expression in hex

ptype <expr> - print the type of a variable or expression

backtrace - print stack trace (list of active functions on the stack)

 (up and down to cycle through function call sites)

quit - exit GDB

 most of these can be abbreviated to the first letter (e.g., ‘p’ for ‘print’)
(see also CS:APP 3.10.2 and Fig. 3.39)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

