
  

CS 261
Fall 2018

Mike Lam, Professor

Computer Systems I: Introduction

Welcome to CS 261!

Please go to socrative.com on your phone or laptop,
choose “student login” and join room “LAMJMU”



  

Question

● What will be the output of this C program?

#include <stdio.h>
int main() {
    int x = 40000;
    int y = 50000;
    if ((x * x) < (y * y)) {
        printf("Less than\n");
    } else {
        printf("Not less than\n");
    }
    return 0;
}

● A) “Less than”
● B) “Not less than”
● C) Neither of the above



  

Question

● What will be the output of this C program?

● A) “Equal!”
● B) “Not equal!”
● C) Neither of the above

#include <stdio.h>
int main() {
    double a = 1e20;
    double b = -a;
    double c = 3.14;
    if (((a+b) + c) == (a + (b+c))) {
        printf("Equal!\n");
    } else {
        printf("Not equal!\n");
    }
    return 0;
}



  

Question

● Which of the following versions of a “matrix copy” 
routine will run the fastest?
– A)

– B)

– C) Neither; they will always run at approximately the 
same speed.

    for (int i = 0; i < 2048; i++) {
        for (int j = 0; j < 2048; j++) {
            dst[i][j] = src[i][j];
        }
    }

    for (int j = 0; j < 2048; j++) {
        for (int i = 0; i < 2048; i++) {
            dst[i][j] = src[i][j];
        }
    }



  

What's happening?

● Something about our mental model of these programs 
does not match the system on which we're running them.

 



  

Systems

● What is a “system?”



  

Systems

● What is a “system?”
– Set of interacting components
– More than the sum of its parts

ComputerJet engine
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Systems

● A computer system consists of multiple hardware 
and software components that work together to run 
user applications.
– We use complex computer systems every day
– Our goal: peel back some of the complexity

● See (some of) what’s “under the hood”



  

Systems

● What is a process? What is a file?



  

Systems

● What is a process? What is a file?
– These are examples of abstraction; "fake" views of reality that 

reduce complexity for users
– Key ideas: ignore details and focus on interfaces
– Especially important in large, complicated systems
– Understanding abstractions can improve your ability to use 

them effectively

abstraction



  

Caveat

● Software system vs systems software
– Former: interconnected software components
– Latter: software providing services to other software
– We are concerned with both!

● Examples: multiprocessing, networking, operating systems, 
compilers, distributed systems



  

Course Objectives

● Explain machine-level representation of data and code
● Summarize the architecture of a computer
● Explain how complex systems are built from simple components
● Translate high-level code into assembly and machine language
● Write code to emulate the functionality of a computer

● Cultivate a sense of control over computer systems
● Gain an appreciation for software development tools
● Develop a sense of play when writing code
● Appreciate the complexity of systems-level software
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Systems courses

● CS 261 units:
– C and Linux (3 weeks)
– Binary Representations (2-3 weeks)
– Assembly and Machine Code (2 weeks)
– Computer Architecture (3 weeks)
– Operating Systems Concepts (3 weeks)

CS 261
Computer Systems I

CS 361
Computer Systems II

CS 450
Operating Systems

CS 432
Compilers

CS 470
Parallel & Distributed

Systems

CS 456
CPU Architecture

Fundamentals of digital, 
single-process systems

Multi-process systems
and networking

In-depth study of a particular 
kind of complex system



  

CS 261

● What this course is NOT:
– Programming 101 – I will assume you can program

● However, we will spend a few weeks learning C

– Electronics 101 – we won’t be going THAT deep
● If you’re interested, check out PHYS 240/250

– Linux 101 – but you have the Unix Users Group
● InstallFest on Wed, Sep 5 at 6:30 in ISAT/CS 246
● Weekly meetings thereafter (same time and place)



  

CS 261

● This is not an “easy” course
– But you can handle it!
– Be prepared to read and work a lot
– Don't be afraid to experiment
– Learn the why and not just the what
– Some stuff is worth memorizing

● (e.g., powers of two and hex characters)

– For other stuff, Google is your friend
– Piazza is also your friend (literally)
– Start assignments early and ask questions



  

Course Components

● Public website (w3.cs.jmu.edu/lam2mo/cs261)
– Syllabus, calendar, assignments, and resources (links)

● Canvas course
– Quizzes and unit tests
– Grades and private files (e.g., lab solutions)
– Piazza Q&A and discussion forum

● Student server (stu.cs.jmu.edu)
– Project development and submission

● Make sure you can access all of these!



  

Course Grades

Quizzes and Labs 20%

Programming Projects 30%

Online Unit Tests 20%

Written Exams 30%

● Quizzes and labs are formative
– Designed to help you learn

● Projects and tests/exams are summative
– Designed to assess what you have learned



  

Textbook(s)

● Required textbook: “Computer Systems”
– “CS:APP” textbook from Carnegie-Mellon
– A practical, example-filled introduction to systems
– Reserve copy at the Rose library

● Recommended book: "The C Programming Language"
– Brian Kernighan and Dennis Ritchie (creator of C)
– This is “the book” about C
– Available on Safari Books through the library



  

Class Policies

● Check Canvas daily for quizzes
● Class attendance is necessary

– We will be “learning by doing” much of the time
– Find a group (2-3 people) to work with consistently, or 

switch it up
● Slides will be posted on the website

– No need to copy them to your notes
● Please silence your cell phones during class

– Be respectful with laptop and tablet usage



  

Course Policies

● The projects in this course are VERY important!
– One purpose of this course is to ensure you are ready to 

tackle harder projects in CS 361 and the system electives

● Projects are individual and mandatory
– A “good faith” submission shows evidence of significant work 

and investment in writing a solution
– A “good faith” submission gets you an “F” (50 or 60 points) 

instead of a zero!



  

Course Policies

● The JMU Honor Code applies on ALL assignments
– Violations may be sent to the honor council
– See relevant section in the syllabus

● All submitted project code must be YOUR work entirely
– You may work in groups to discuss general approaches (in 

fact, I encourage this; use pseudocode if necessary)
– However, the primary goal of the projects in this course is to 

develop individual competency, so you may NOT share code
– This includes letting someone examine or take a photo of your 

code, or “talking it through” with them line-by-line
– If you have questions about this, please ask!



  

Question

● Which of the following are honor code violations in this 
course when done in the presence of non-instructors? 
(Select all that apply.)
– A) Writing English psuedocode of project solutions on a 

whiteboard
– B) Storing project solutions in a public Github repo
– C) Screen-sharing with project code visible on Skype
– D) Writing C code of project solutions on a whiteboard
– E) Discussing code design choices (e.g., “did you write a helper 

method for this part?”)
– F) Storing project solutions in a private Github repo
– G) Taking a photo of project code on a computer screen



  

Course Policies

● There are a total of three sections of CS 261
– Two Lam sections and one Weikle section (all T-Th)
– Projects, unit tests, and exams are common
– Quizzes and labs may differ
– You are welcome to study with students from other 

sections, but you must attend and submit assignments to 
the section you are registered for



  

Intro lab

● Material from Chapter 1
● Front page: Computer Organization
● Back page: C Compilation
● Work in groups of 2-3 (no computer required)
● Submit at end of class



  

Office hours

● My office hours TBD (just drop in this week)
● General TAs

– ISAT/CS 248 and 250
– 5pm-11pm on Mon-Thurs and Sunday 1-11 pm

● 261-specific TA: Becky Wild
– 7-9pm Tue and 7-11pm Thur



  

Have a great semester!

● Before Thursday:
– Take the intro and email disclosure surveys on Canvas
– Read sections 1.1-1.4 and 1.8 in CS:APP and take quiz
– Make sure you can log into stu

– Make sure you can access Piazza
– Review these slides
– Read project guide on website

● For a real head start, read the Project 0 description
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