Threads



I Parallel computing

e Goal: concurrent or parallel computing

— Take advantage of multiple hardware units to solve multiple
problems simultaneously

e Motivations:

— Maintain high utilization during slow 1/O downtime
— Maintain Ul responsiveness during computation
— Respond simultaneously to multiple realtime events

— Split up a large problem and solve sub-pieces concurrently to
achieve faster time-to-solution (strong scaling)

— Solve larger problems by adding more hardware (weak scaling)



I Parallel computing

e Process: currently-executing program

— Code and state (PC, stack, data, heap)
— Private address space

e Thread: unit of execution or logical flow

— Exists within the context of a single process
— Shares code/data/heap/files w/ other threads

— Keeps private PC, stack, and registers
e Stacks are technically shared, but harder to access



I Threads

e One main thread for each process

— Can create multiple peer threads

Time

Thread 1
(main thread)

Thread 2
(peer thread)

} Thread context switch

} Thread context switch

} Thread context switch

Single-core example



I POSIX threads

e Pthreads — POSIX standard interface for threads in C

— Not part of the standard library
e Requires “-1pthread” flag during linking
- pthread_create: spawn a new child thread

« pthread_t struct for storing thread info

e attributes (or NULL)
e thread work routine (function pointer)
e thread routine parameter (void*, can be NULL)

- pthread_self: get current thread ID
- pthread_exit: terminate current thread

e can also terminate implicitly by returning from the thread routine
- pthread_join: wait for another thread to terminate



I Thread creation example

#include <stdio.h>
#include <pthread.h>

main

void* work (void* arg) peer create()

{ work()
printf("Hello from work routine!\n");

return NULL;

join()
}

int main ()

{

printf("Spawning single child ...\n");
pthread_t child,;

pthread_create(&child, NULL, work, NULL);
pthread_join(child, NULL);
printf("Done!\n");

return 0;



I Shared memory

e Variables in threaded programs

— Global variables (shared, single static copy)
— Local variables (multiple copies, one on each stack)

e Technically still shared if in memory, but harder to access
* Not shared if cached in register
e Safer to assume they're private; this is conventional

— Local static variables (shared, single static copy)
— Heap-allocated variables (shared, dynamic)



I Processes vs. threads

e Process: currently-executing program
— Code and state (PC, stack, data, heap)
— Created via system call (fork); parent and child continue equally
— Private address space not shared w/ other processes
— Advantages: isolation, safety, and mutual exclusion
e Thread: unit of execution or logical flow
— EXists within a process context
— Created via library call (pthread_create); child runs separate routine
— Shared address space w/ other threads

— Private PC, registers, condition codes, and stack
— Advantages: faster context switching, more shared resources



I Parallel patterns

e Common pattern: master/worker threads

— One original (main thread) creates multiple “child” threads
— Each worker thread does a chunk of the work

e Coordinate via shared global data structures
 Keep as much data as possible local to the thread

— Main thread waits for workers, then aggregates results

master

workers . create

. join



I Issues with shared memory

e Nondeterminism

e Data races and deadlock

foo:

irmovq X, %rcx
irmovq 7, %rax
mrmovqg (%rcx), %rdx
addqg %rax, %rdx
rmmovqg %rdx, (%rcx)
ret

.quad 0

threadl

¢
v

foo()

thread2

¢
Y




I Issues with shared memory

e Nondeterminism

e Data races and deadlock

foo:

irmovq X, %rcx
irmovq 7, %rax
mrmovqg (%rcx), %rdx
addqg %rax, %rdx
rmmovqg %rdx, (%rcx)
ret

.quad 0

threadl

¢
v

irmovq X, %rcx
irmovq 7, %rax

mrmovq (%rcx), %rdx
addqg %rax, %rdx
rmmovqg %rdx, (%rcx)
ret

thread2

foo() ‘
v

irmovqg X, %rcx
irmovqg 7, %rax

mrmovq (%rcx), %rdx
addq %rax, %rdx
rmmovg %rdx, (%rcx)
ret

This interleaving is ok.



I Issues with shared memory

e Nondeterminism

e Data races and deadlock

foo:

irmovq X, %rcx
irmovq 7, %rax
mrmovqg (%rcx), %rdx
addqg %rax, %rdx
rmmovqg %rdx, (%rcx)
ret

.quad 0

threadl

¢
v

irmovqg X, %rcx
irmovq 7, %rax
mrmovq (%rcx), %rdx

addqg %rax, %rdx
rmmovqg %rdx, (%rcx)
ret

thread2

foo() ‘

irmovqg X, %rcx
irmovq 7, %rax
mrmovq (%rcx), %rdx

addq %rax, %rdx
rmmovq %rdx, (%rcx)
ret



I Issues with shared memory

e Nondeterminism

e Data races and deadlock

foo:

irmovq X, %rcx
irmovq 7, %rax
mrmovqg (%rcx), %rdx
addqg %rax, %rdx
rmmovqg %rdx, (%rcx)
ret

.quad 0

threadl thread2

’ foo() 6
Y Y

irmovqg X, %rcx
irmovq 7, %rax
mrmovq (%rcx), %rdx

irmovqg X, %rcx
irmovq 7, %rax
mrmovq (%rcx), %rdx
addqg %rax, %rdx

rmmovqg %rdx, (%rcx)

ret

addq %rax, %rdx
rmmovq %rdx, (%rcx)
ret

PROBLEM!



I Issues with shared memory

e Nondeterminism threadl thread2

e Data races and deadlock

foo: ’ roov 6

irmovqg X, %rcx % %
irmovq 7, %rax

mrmovqg (%rcx), %rdx irmovg x, %rex

addq %rax, %rdx S i
rmmovqg %rdx, (%rcx) Trmovg 7, %rax
ret mrmovq (%rcx), %rdx

addqg %rax, %rdx
rmmovqg %rdx, (%rcx)

X. ret
.quad 0 addq %rax, %rdx
rmmovqg %rdx, (%rcx)
ret

This will be a major topic in CS 361.



I Mutual exclusion

e Fixing a data race requires some form of mutual exclusion

Only one thread at a time should update a particular memory region

In Pthreads, this can be accomplished using either a mutex or a
semaphore (more details in CS 361)

However, these mechanism introduce overhead!

e Threads must perform additional checks before updating memory
e Some threads may have to pause and wait before they may continue

If not implemented carefully, the additional overhead may defeat the
purpose of using multiple threads

Efficient parallel and distributed computing can be hard!



I Automatic parallelism

 Wouldn't it be great if the compiler could automatically parallelize
our programs?

— This is a HARD problem
— In some cases, it is (kind of) possible

— Approach #1: code annotations in existing language
« Example: OpenMP (CS 450, CS 470)

— Approach #2: new language designed for parallelism
 Example: HPF and Chapel (CS 430, CS 470)

int a[100],

var a: [100] int;
#pragma omp parallel for
int i; forall i in 0..100 do

for (i=0; i < 100; i++) al[i] = 1*i;
a[i] = i*i;

OpenMP example Chapel example



I Parallel systems

Uniprogramming / batch (1950s) - CS 261

— One process at a time w/ complete control of CPU
— Minimal OS (mostly for launching programs)

Multiprogramming / multitasking / time sharing (1960s) - CS 261, CS 450

— Multiple processes taking turns on a single CPU

— Increased utilization, lower response time
— OS handles scheduling and context switching

(Symmetric) multiprocessing (1970s) - CS 361, CS 450, CS 470

— Multiple processes share multiple CPUs or cores

— Increased throughput, increased parallelism
— OS handles scheduling, context switching, and communication

Distributed processing (1980s and onward) - CS 361, CS 470

— Multiple processes share multiple computers

— Massive scaling; OS no longer sufficient (other middleware required)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

