Files

I Files

* Afile is a sequence of bytes

- Logical abstraction provided by the operating system
- In Linux, many things are represented as files
- All I/O is performed by reading/writing "files"

- Raw format on disk is determined by file system
« Common file systems: FAT32, NTFS, HFS+, ext4, Lustre

* Basic file operations:

- Open afile (returns a file descriptor integer identifier)
— Change current position (seek)

- Read and write bytes

- Close a file (kernel does this if the process does not)

I Files

* Reqgular files — contain arbitrary data

- Binary vs. text file distinction (applications only)

— Context Is crucial! (Info = Bits + Context)
* All files are “binary”!

* Directory files — contain links to other files
- Special links: "." (self) and ".." (parent)

* Socket files — links to another process
— Could be on another computer

- Used for inter-process communication (IPC)
- You'll learn to use these in CS 361

I File systems

* File systems abstract the details of file storage

- Manage logical — hardware mapping
- Manage metadata (stored in inodes)

* File systems must be mounted

- One “root” file system (“/”); use mount to add others

— Mounted into a specific mount point in root file system
— Usually auto-mounted according to /etc/fstab

- Use df utility to view mounted file systems

- File system can be mounted from another machine
* Networked File System (NFS)

I File system hierarchy

* File system hierarchy standard (FHS)

* Absolute vs. relative pathnames

— Absolute: path from root (/)
- Relative: path from current working directory

/
|
| | | |

p e

bin etc home 1lib opt proc tmp usr

anne sam cee bin include 1local share SIrc

acyclic diff dot gcC neato

I Directory contents

e Use "dirent" functions and DIR* abstraction

- #include dirent.h

- opendir(), dirent(), closedir()

// open current directory listing
DIR *dir = opendir(".");

struct dirent *entry = readdir(dir);
while (entry != NULL) {

// print file information
printf("[%d] %s (%d bytes)\n",
(int)entry->d_ino, entry->d_name);

// next file in listing
entry = readdir(dir);

}

closedir(dir);

I File metadata

e Metadata is information about a file

Stored in an inode by the file system or kernel
Use stat () or fstat() to obtain a file's metadata

Need unistd.h and sys/stat.h

Direct blocks

Information: it

blocks

Indirect blocks

File type (reqgular, directory, socket) it
User and group owner IDs -
Access permissions

Total size (in bytes or blocks)
Date/time of last access/maodification
Device ID

Pointers to file data on device (direct or indirect)

I File permissions

* Traditional Unix permissions

user group other

— Three bits: read, write, execute ueer growp
» Stored in inode; interpreted using octal -FwW-r--r--

. 4
- Three categories: user, group, other directory?

\

- Every file has a user owner and a group
e “Other” = everyone else (not owner or in group)
- See output of “1s -1" and “groups”

— Change permissions using chmod
- chmod u+x <file> (add execute permission for user)
« chmod go-w <file> (remove write permission for group/other)
- chmod a+r <file> (add read permission for everyone)
« chmod 644 <file> (Set permissions to rw-r--r--

I File permissions

* Access Control Lists (ACLS)

- Newer mechanism (more complex but more flexible)

- Any desired permission at any desired granularity
« getfacl() /setfacl()

— Useful for fine-grained permissions

 Example: your PA submission folders for this class
— Interactions with traditional permissions can be tricky

* Effective permissions are the intersection of traditional and ACL

I File sharing

* Open files can be shared among processes via OS
— Descriptor table (per-process) - duplicated on fork
— Open file table (shared) - use 1sof utility to view
- Inode table (shared) - called “v-node” table in textbook

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
File A
—-—-_-_-_F-_-_-_-_-_+ H
fd 0 T e — File access
fd 1 =0 : T
id 2 File pos F.Ile size
fd 3 refcnt=1 File type
fd 4 ~ : :
7
File pos

refont=1

I File I/O functions

* Unix I/O functions
- open, read, write
— Thin wrappers for system calls
- Uses integer file descriptors
e C standard I/O functions (libc)
- fopen, fread, fgets, fwrite, fprintf, fseek, fclose
- Provides buffering and line ending translation
— Uses FILE* file stream abstraction around file descriptors
— More portable!

e Textbook's robust I/O routines

- Wrappers for buffered terminal/socket 1/O (no short counts)
- We won't use them in this course

I File I/O functions

* General guidelines (from textbook)
- Use the standard I/O functions whenever possible
— Don’t use scanf to read binary files
— Use the robust I/O functions for network sockets

fopen fdopen
fread fwrite

Ezcanf fprintf
sscanf sprintf |» C application program

fgets fputs rio readn
fflush fseek 4 rio writen
fclose Stande_lrd /10 RI.O - == Iio_readinitb
functions functions e :
rio readlineb
g . . .
e Unix 1/O functions i

write lseek |[+----

SEAE agi (accessed via system calls)

I Standard |/O

* Three C standard file streams for every process
- Standard input (stdin)
- Standard output (stdout)
— Standard error (stderr)
- In Java: System.in, System.out, and System.err
* Used by default in some places
- printf("Hello!") means fprintf(stdout, "Hello!")

stdin) a.out stdout)

{} stderr

I /O redirection

* Linux shells allow you to redirect standard I/O streams

- Standard out: echo "Hello" > data.txt
* By default, prints to the console
- Standard in: wc < data.txt

* By default, reads from the keyboard
 Use CTRL-D to signal “end” of input

— Standard err: ./mybigapp 2> log.txt
- Outand err: ./mybigapp &> output.txt
- Pipes: 1s */*.c | grep "p4"

« Can combine with redirection: 1s */*.c | grep "p4" > p4-files.txt

:|'> IS :|'> grep ::> p4-files.txt

I System design

* Unix system design philosophy:
- Write programs that do one thing and do it well

- Write programs to work together

— Write programs to handle text streams, because that is a
universal interface

Example:

Determine the most-frequently-used word in the
complete works of William Shakespeare.

curl http://www.gutenberg.org/files/100/100.txt |
tr -cs A-Za-z '\n' | tr A-Z a-z | sort | uniq -c |
sort -rn | sed 1q

I Review: Operating Systems

e Bits + Context
e Abstraction

Virtual machine

i g
(/—_—_ —-\.
Iy Y ety Processes ;
: — Sl :
! C“Instruction set i s
: 1 architecture Virtual memory :
: ! A |
1 I ‘|I _"\\1'
i Files ;
P1 : P4 ' by :
v ' ,r’:" ~y

Operating system| Processor Main memoryx,/' /0 devices

S
~
~
e
S
-

-
-
="
-

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

