

CS 261
Fall 2017

Mike Lam, Professor

Caching
(get it??)

Topics

● Caching
● Cache policies and implementations
● Performance impact
● General strategies

Caching

● A cache is a small, fast memory that acts as a
buffer or staging area for a larger, slower memory
– Fundamental CS system design concept
– Data is transferred in blocks
– Slower caches use larger block sizes
– Cache hit vs. cache miss
– Hit ratio: # hits / # memory accesses

Caches

● A cache always begins cold (empty)
– Every request will be a cold miss initially

● As the cache loads data, it is warmed up
– This effect can cause performance measurement

variation during experiments if not controlled for
● A working set is a collection of elements needed

repeatedly for a particular computation
– If the working set doesn't fit in cache, this is called a

capacity miss

Cache implementations

● What data structure can we use to implement caches?
– Need FAST lookups and containment checks

Cache implementations

● What data structure can we use to implement caches?
– Need FAST lookups and containment checks
– From CS 240: use a hash table!
– Cache address = "real address" % CACHE_SIZE

What if we wanted our
cache to store blocks
longer than a single byte?

What if multiple "real"
addresses map to the
same cache slot?

Cache implementations

● A cache line is a block or sequence of bytes that is moved between
memory levels in a single operation

● A cache set is a collection of one or more cache lines
– Each cache line contains a tag to identify the source address and a valid flag/bit

indicating whether the value is up-to-date
● Cache parameters (S, E, B, m):

– S = # of cache sets = 2s

● s = # of bits for set index

– E = # of lines per cache set
– B = block (cache line) size = 2b

● b = # of bits for block offset

– m = # of bits for memory address
● M = size of memory in bytes = 2m

– C = total cache capacity = S x E x B
– t = # of tag bits = m - s - b

Cache implementations

● Direct-mapped (E = 1) caches

Cache implementations

● Set-associative (1 < E < C/B) caches

“Two-way associative”

Cache implementations

● Fully-associative (E = C/B) caches

Cache implementations

● Why use the middle bits for the set index?
– Contiguous memory blocks should map to different cache sets

Cache architecture

● Example: Intel Core i7
● Per-core:

– Registers
– L1 d-cache and i-cache

● Data and instructions

– L2 unified cache
● Shared:

– L3 unified cache
– Main memory

Cache policies

● If a cache set is full, a cache miss in that set
requires blocks to be replaced or evicted

● Policies:
– Random replacement
– Least recently used
– Least frequently used

● These policies require additional overhead
– More important for lower levels of the memory hierarchy

Cache policies

● How should we handle writes to a cached value?
– Write-through: immediately update to lower level

● Typically used for higher levels of memory hierarchy

– Write-back: defer update until replacement/eviction
● Typically used for lower levels of memory hierarchy

● How should we handle write misses?
– Write-allocate: load then update

● Typically used for write-back caches

– No-write-allocate: update without loading
● Typically used for write-through caches

Performance impact

● Metrics
– Hit rate/ratio: # hits / # memory accesses (1 – miss rate)

● Hit time: delay in accessing data for a cache hit

– Miss rate/ratio: # misses / # memory accesses
● Miss penalty: delay in loading data for a cache miss

– Read throughput (or "bandwidth"): the rate that a program
reads data from a memory system

● General observations:
– Larger cache = higher hit rate but higher hit time
– Lower miss rates = higher read throughput

Temporal locality

● Working set size vs. throughput

Spatial locality

● Stride vs. throughput

Memory mountain

● Stride and WSS vs. read throughput

Memory mountain (stu)

Output of lscpu:

Architecture: x86_64
Byte Order: Little Endian
CPU(s): 24
Thread(s) per core: 2
Core(s) per socket: 6
Socket(s): 2
Vendor ID: Intel
Model name:
Intel(R) Xeon(R) CPU E5-2640
CPU max MHz: 3000.0000
CPU min MHz: 1200.0000
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 15360K

Case study: matrix multiply

Case study: matrix multiply

Optimization strategies

● Focus on the common cases
● Focus on the code regions that dominate runtime
● Focus on inner loops and minimize cache misses
● Favor repeated local accesses (temporal locality)
● Favor stride-1 access patterns (spatial locality)

Next time

● Virtual memory: an OS-level memory cache

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

