

CS 261
Fall 2017

Mike Lam, Professor

CPU architecture

Topics

● CPU stages and design

● Pipelining

● Y86 semantics

CPU overview

● A CPU consists of

– Combinational circuits for computation

– Sequential circuits for (cached) memory

– Wires/buses for connectivity and intermediate results

– A clocked register PC for synchronization

Example

%rdx = 0x200 %rdx = 0x200

Example

%rdx = 0x200 %rdx = 0x200

6-stage von Neumann cycle

1) Fetch

2) Decode

3) Execute

4) Memory

5) Write back

6) PC update

Fetch

● Read ten bytes
from memory at
address PC

● Extract
instruction fields

● Compute valP
(address of next
instruction)

– oldPC + 1 +
needsRegIDs +
8*needsValC

Decode (and Write back)

● Read and write
register file

– Two simultaneous
reads and two
simultaneous writes

– Use value 0xF to
disable a read or
write

Execute

● Perform arithmetic
or logic operation

– Could also be an
effective address
calculation or stack
pointer increment /
decrement

● Set condition codes

– Only if OPq

Memory

● Read or write
memory

– No instruction
does both!

PC update

● Set new PC

– Will depend on
whether a branch
should be taken

CPU design

● SEQ: sequential Y86 CPU

– Runs one instruction at a time

– ssim: simulator

● Components:

– Clocked register (PC)

– Hardware units (blue boxes)
● Combinational/sequential circuits
● ALU, register file, memory

– Control logic (grey rectangles)
● Combinational circuits
● Details in textbook

– Wires (white circles)
● Word (thick lines)
● Byte (thin lines)
● Bit (dotted lines)

● Principle: no reading back

– Stages run simultaneously

– Effects remain internally consistent

System design

● CPU measurement

– Throughput: instructions executed per second
● GIPS: billions of (“giga-”) instructions per second
● 1 GIPS → each instruction takes 1 nanosecond (a billionth of a second)

– Latency / delay: time required per instruction
● Picosecond: 10-12 seconds Nanosecond: 10-9 seconds
● 1,000 ps = 1 nanosecond

– Relationship: throughput = # instructions / latency
● Example: 1 / 320ps * (1000ps/ns) = 0.003125 * 1000 ≈ 3.1 GIPS

System design

● Current CPU design is serial

– One instruction executes at a time

– Only way to improve is to run faster!

– Limited by speed of light / electricity

● One approach: make it smaller

– Shorter circuit = faster circuit

– Limited by manufacturing technology

What else could we do?

System design

?

● Idea: pipelined design

– Multiple instructions execute simultaneously (“instruction-level parallelism”)

– Similar to cafeteria line or car wash

– Split logic into stages and connect stages with clocked registers

– System design tradeoff: throughput vs. latency

System design

● Idea: pipelined design

– Multiple instructions execute simultaneously (“instruction-level parallelism”)

– Similar to cafeteria line or car wash

– Split logic into stages and connect stages with clocked registers

– System design tradeoff: throughput vs. latency

Pipelining

● Limitation: non-uniform partitioning

– Logic segments may have significantly different lengths

Pipelining

● Limitation: dependencies

– The effect of one instruction depends on the result of another

– Both data and control dependencies

– Sometimes referred to as hazards

Data dependency:

irmovq $8, %rax

addq %rax, %rbx

mrmovq 0x300(%rbx), %rdx

Control dependency:

loop:

subq %rdx, %rbx

jne loop

 irmovq $10, %rdx

Pipelining

Data dependency:

irmovq $8, %rax

addq %rax, %rbx

mrmovq 0x300(%rbx), %rdx

Control dependency:

loop:

subq %rdx, %rbx

jne loop

 irmovq $10, %rdx

● Limitation: dependencies

– The effect of one instruction depends on the result of another

– Both data and control dependencies

– Sometimes referred to as hazards

Pipelining

● Approaches to avoiding hazards

– Stalling: “hold back” an instruction temporarily

– Data forwarding: allow latter stages to feed into earlier
stages, bypassing memory or registers

– Hybrid: stall and forward

– Branch prediction: guess address of next instruction

– Halt execution (or throw an exception)

– For more info, read CS:APP section 4.5

Y86 pipelining

● It's complicated!

– Split up the stages
and add more
clocked registers for
intermediate results

Summary

● We’ve now learned how a CPU is constructed

– Transistors → logic gates → circuits → CPU

– Pipelining provides instruction-level parallelism

● This is not a CPU architecture class

– We won’t be closely studying the specifics of SEQ

– If you’re interested, the details are in section 4.3

– Same for PIPE (the pipelined version), in section 4.5

– If you’re REALLY interested, lobby for CS 456

CS 456: Architecture

● Course objectives:

– Describe the construction of a pipelined CPU from low-level components

– Describe hardware techniques for parallelism at various levels

– Summarize storage and I/O interfacing techniques

– Apply address decoding and memory hierarchy strategies

– Evaluate the performance impact of cache designs

– Implement custom hardware designs in an FPGA

– Justify the use of hardware-based optimization that fails occasionally

– Develop a sense for the challenges of hardware debugging

Lessons learned

● Computers are not human; they’re complex machines

– Machines require extremely precise inputs

– Machine output can be difficult to interpret

● Abstraction helps to manage complexity

– Use simpler components to build more complex ones

● System design involves tradeoffs

– Simpler ISA vs. ease of coding

– Throughput vs. latency

● The details matter (A LOT!)

– There are many ways to fail

– Skill and dedication are required to succeed

Y86 semantics

● Semantics: the study of meaning

– What does an instruction "mean"?

– For us, this is the effect that it has on the machine

– We should specify these semantics very formally

– This will help us think correctly about P4

Aside: syntax notes

● R[RSP] = the value of %rsp

● R[rA] = the value of register with id rA

● M1[PC] = the value of one byte in memory at address PC

● M8[PC+2] = the value of eight bytes in memory at address PC+2

● rA:rB = M1[PC+1] means read the byte at address PC+1

– Split it into high- and low-order 4-bits for rA and rB

● Cond(CC, ifun) returns 0 or 1 based on CC and ifun

– Determines whether the given CMOV/JUMP should happen

● Convention: write addresses using hex padded to three chars

● Convention: write integer literals using decimal w/ no padding

Example: IRMOVQ

This instruction sets %rsp to 128 and increments the PC by 10

128

Example: POPQ

This instruction sets %rax to 9, sets %rsp to 128, and increments the PC by 2

R[%rsp] = 120 M
8
[120] = 9

Example: CALL

R[%rsp] = 128

This instruction sets %rsp to 120, stores the return address 0x040 at [%rsp],
and sets the PC to 0x041

128 – 8 = 120

Y86 semantics

Y86 CPU (P4)

1) Fetch ←P3!

▪ Splits instruction at PC into pieces

▪ Save info in y86_inst_t struct

2) Decode (register file)

▪ Reads registers

▪ P4: Sets valA

3) Execute (ALU)

▪ Arithmetic/logic operation, effective address
calculation, or stack pointer
increment/decrement

▪ P4: Sets valE and Cnd

4) Memory (RAM)

▪ Reads/writes memory

5) Write back (register file)

▪ Sets registers

6) PC update

▪ Sets new PC

inst

P3 fetch()

P4 decode_execute()

P4 memory_wb_pc()

von Neumann architecture

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

