Sequential Circuits



I Circults

e Circuits are formed by linking gates together

— Inputs and outputs
e Link output of one gate to input of another
e Some gates have multiple inputs and/or outputs
— Combinational circuits: outputs are a boolean function of inputs
* Not time-dependent
e Used for computation
— Sequential circuits: output is dependent on previous outputs

e Time-dependent
e Used for memory



* Question: How do we make a circuit “remember” something?



Circuit memory

e Question: How do we make a circuit “remember” something?

— Answer: Create a feedback loop!
— Creates a “storage” circuit, often called a latch
— Truth table must include previous state

— Alternatively, draw a timing diagram

e Shows how input/output signals change with respect to time
e Given input signals in diagram, we can determine output signals



I SR AND-OR latch
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I SR NOR latch
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I D latch

From “Code” book: S = “Save that bit!”
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I Signal changes

 The original D latch reflects D input on Q as long as “set” is on
e Edge-triggered latches change Q on rising edge of “set” signal
* Master-slave latches change Q on falling edge of “set” signal
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I Master-slave D latch

Original D latch:
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I Clocks

* Provide oscillating signal

e Often used as “set” signal for latches

e Keeps computation and memory in sync

e Clocked latches are called flip-flops

 The clock period is the inverse of the frequency (measured in hertz)

* The length of a clock period determines the minimum time an
Instruction takes to execute
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I Flip-flop types

e SR: “set-reset”
e D: “data” bit + clock
e T:"toggle”
e JK: like SR + T (toggle when S=1, R=1)
- JisS,KisR
* Any of these can be used to build the others
* Also can be built from basic logic gates in multiple ways



I Registers

Registers: arrays of flip-flops with a single set/clock input

Connected by buses (groups of wires) to other components

Edge triggering allows computation to stabilize before results are saved

Caveat: difference between hardware registers and program registers

— Former are physical, latter are logical (and stored in a register file)
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e Register files: multiple reqgisters w/ selector inputs

— Use multiplexors to differentiate
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I Memory

 Memory: multiple flip-flops w/ address input

— Random access memory (RAM) - can access any address at any time

— Use decoder (translates 3-bit number to 8 “set” signals) to write data

— Use selector (multiplexor) to read data
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I ALUs and memory

e Combine adders and multiplexors to make arithmetic/logic units

 Combine flip-flops to make register files and main memory
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I CPUs

e Combine ALU with
registers and

memory to make
CPUs
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