Sequential Circuits

I Circults

e Circuits are formed by linking gates together

— Inputs and outputs
e Link output of one gate to input of another
e Some gates have multiple inputs and/or outputs
— Combinational circuits: outputs are a boolean function of inputs
* Not time-dependent
e Used for computation
— Sequential circuits: output is dependent on previous outputs

e Time-dependent
e Used for memory

* Question: How do we make a circuit “remember” something?

Circuit memory

e Question: How do we make a circuit “remember” something?

— Answer: Create a feedback loop!
— Creates a “storage” circuit, often called a latch
— Truth table must include previous state

— Alternatively, draw a timing diagram

e Shows how input/output signals change with respect to time
e Given input signals in diagram, we can determine output signals

I SR AND-OR latch

R|®
s|®

S =“set” R = “reset”

R|®
S| €
0
0

Q

Q

I SR NOR latch

© SN
R__ i |

o

s[® < o

Disallow S=1, R=1 because Q' #!Q

I D latch

From “Code” book: S = “Save that bit!”

—Q D—To+—@x
D g i

I Signal changes

 The original D latch reflects D input on Q as long as “set” is on
e Edge-triggered latches change Q on rising edge of “set” signal
* Master-slave latches change Q on falling edge of “set” signal

D : D |
Q P Q E
a b ¢ a b ¢

Edge-triggered D latch Master-slave D latch

I Master-slave D latch

Original D latch:
o k1f—g—>0—

spal

I Clocks

* Provide oscillating signal

e Often used as “set” signal for latches

e Keeps computation and memory in sync

e Clocked latches are called flip-flops

 The clock period is the inverse of the frequency (measured in hertz)

* The length of a clock period determines the minimum time an
Instruction takes to execute

Clk

|
Clock period=1/f

I Flip-flop types

e SR: “set-reset”
e D: “data” bit + clock
e T:"toggle”
e JK: like SR + T (toggle when S=1, R=1)
- JisS,KisR
* Any of these can be used to build the others
* Also can be built from basic logic gates in multiple ways

I Registers

Registers: arrays of flip-flops with a single set/clock input

Connected by buses (groups of wires) to other components

Edge triggering allows computation to stabilize before results are saved

Caveat: difference between hardware registers and program registers

— Former are physical, latter are logical (and stored in a register file)

cl kE i-

Datal *8 r
State = x State =y
Input =y Output = x |:> T;I;? |:> Output =y

e Register files: multiple reqgisters w/ selector inputs

— Use multiplexors to differentiate

valA |
_sreA | A I valw
Read ports ._Ft?fgnlztar W\ dstw Write port
valB o :
srcB |B

clock

Use multiplexors to
read/write from the
appropriate register
using srcA, srcB, or
dstW signals (set
dstW to OxF to read

only)

I Memory

 Memory: multiple flip-flops w/ address input

— Random access memory (RAM) - can access any address at any time

— Use decoder (translates 3-bit number to 8 “set” signals) to write data

— Use selector (multiplexor) to read data

Address

Write

Data In

S Data
5
1 s, 3-10-8 Decoder

0, 0, Oy 0,

W DI|| W WDl W DI WD
Do DO Do Do DO
Dy D, D, D, D,

% 8-to-1 Selector

Qutput

Single RAM array

Data Out

data out
error Asesanranannnnnnn T
read >
Data
memo
Wt seseeess >) clock

B

address datain

Abstraction of multiple
RAM arrays

I ALUs and memory

e Combine adders and multiplexors to make arithmetic/logic units

 Combine flip-flops to make register files and main memory

0 1 2 S
¥ —-\}\ b _\J\ Y —-\L Y —*\K
“A oa A “A
i " X+Y L * X-Y I X &Y 15
U U U U
X —'V X —'y X —'V X —"V
Basic Arithmetic Logic Unit (ALU)
Data0 OQ’”‘ OQB OQ"
A-bit D D D
Reg O | O | O | O>
gister
Clocko | |

Qo

I CPUs

e Combine ALU with
registers and

memory to make
CPUs

imom_ e

Write back

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 17
	Slide 18

