

CS 261
Fall 2017

Mike Lam, Professor

Combinational Circuits

The final frontier

● Java programs running on Java VM
● C programs compiled on Linux
● Assembly / machine code on CPU + memory
● ???
● Switches and electric signals

Aside: Relays

● From “Code” recommended reading:

Relay

Question: what happens if
we connect the light bulb to
the other contact?

Aside: Relays

● From “Code” recommended reading:

Regular relay Inverted relay (NOT)

Aside: Relays

● From “Code” recommended reading:
ON ON

ON

Aside: Relays

● From “Code” recommended reading:

Relays in series (AND) Relays in parallel (OR)

ON ON

ON

Digital hardware

● Digital signals are transmitted via electric signals by
varying voltages
– 1.0 V (high) = binary 1
– 0.0 V (low) = binary 0
– Use a threshold to distinguish

Images from https://learn.sparkfun.com/tutorials/transistors

https://learn.sparkfun.com/tutorials/transistors

Digital hardware

● Digital signals are transmitted via electric signals by
varying voltages
– 1.0 V (high) = binary 1
– 0.0 V (low) = binary 0
– Use a threshold to distinguish

Images from https://learn.sparkfun.com/tutorials/transistors

AND OR

https://learn.sparkfun.com/tutorials/transistors

Transistors

● Transistors are the fundamental hardware component of computing
– Similar to relays; replaced vacuum tubes

● Smaller, more reliable, and use less energy
● Primary functions: switching and amplification

– Mostly silicon-based semiconductors now
● Metal–Oxide–Semiconductor Field-Effect Transistor (MOSFET)
● n-channel (“on” when Vgate = 1V) vs. p-channel (“off” when Vgate = 1V)
● Mass-produced on integrated circuit chips

– For convenience, we abstract their behavior using logic gates

Logic gates

● Primary gates:

& 0 1

0 0 0

1 0 1

| 0 1

0 0 1

1 1 1

!

0 1

1 0

0 1

0 1 1

1 1 0

0 1

0 1 0

1 0 0

^ 0 1

0 0 1

1 1 0

Logic gates

● Primary gates:

& 0 1

0 0 0

1 0 1

| 0 1

0 0 1

1 1 1

!

0 1

1 0

AND OR NOT

0 1

0 1 1

1 1 0

0 1

0 1 0

1 0 0

NAND NOR XOR

^ 0 1

0 0 1

1 1 0

Important properties

● Identity: a AND 1 = a (a OR 0) = a

● Constants: a AND 0 = 0 (a OR 1) = 1
– Also: a NAND 0 = 1 (a NOR 1) = 0

● Inverses: a NAND 1 = !a (a NOR 0) = !a
– Also: a NAND a = !a a NOR a = !a

● Double inverse: !!a = a
– Or: NOT(NOT(a)) = a

● De Morgan’s law: !(a & b) = !a | !b
– Alternatively: !(a | b) = !a & !b

(remember this from CS 227?)

Lab

● Part 1

Basic combinatorial circuits

● Circuits are formed by connecting gates together
– Inputs and outputs

● Link output of one gate to input of another
● Some gates have multiple inputs and/or outputs

– Textbook uses Hardware Description Language (HDL)
– Equivalent to boolean formulas or functions

● f(g(x, y)) means apply “operation f to the result of operation g on x and y”
● In a diagram: x,y → g → f (i.e., ordering is g first, then f)

Basic combinatorial circuits

● Circuits are formed by connecting gates together
– In a diagram: x,y → g → f (i.e., ordering is g first, then f)
– NAND example: (similarly for NOR)

● Infix/boolean notation: a NAND b = !(a & b)
● Function notation: NAND(a, b) = NOT(AND(a, b))

a
b

0 1

0 0 0

1 0 1

a AND b

0 1

0 ? ?

1 ? ?

Basic combinatorial circuits

● Circuits are formed by connecting gates together
– In a diagram: x,y → g → f (i.e., ordering is g first, then f)
– NAND example: (similarly for NOR)

● Infix/boolean notation: a NAND b = !(a & b)
● Function notation: NAND(a, b) = NOT(AND(a, b))

a
b

0 1

0 0 0

1 0 1

a AND b

0 1

0 1 1

1 1 0 0 1

0 1 1

1 1 0

a NAND b

Basic combinatorial circuits

● Circuits are equivalent if the truth tables are the same
– a XOR b = (a OR b) AND (a NAND b)
– XOR(a, b) = AND(OR(a,b), NAND(a,b))

XOR

^ 0 1

0 0 1

1 1 0

Basic combinatorial circuits

● Circuits are equivalent if the truth tables are the same
– a XOR b = (a OR b) AND (a NAND b)
– XOR(a, b) = AND(OR(a,b), NAND(a,b))

XOR

^ 0 1

0 0 1

1 1 0

| 0 1

0 0 1

1 1 1

a OR b

0 1

0 1 1

1 1 0

a NAND b

Basic combinatorial circuits

● Circuits are equivalent if the truth tables are the same
– a XOR b = (a OR b) AND (a NAND b)
– XOR(a, b) = AND(OR(a,b), NAND(a,b))

XOR

^ 0 1

0 0 1

1 1 0

| 0 1

0 0 1

1 1 1

a OR b

0 1

0 1 1

1 1 0

a NAND b

0 1

0 0 1

1 1 0

(a OR b) AND
(a NAND b)

Basic combinatorial circuits

● Circuits are equivalent if the truth tables are the same
– a XOR b = (a OR b) AND (a NAND b)
– XOR(a, b) = AND(OR(a,b), NAND(a,b))

XOR

^ 0 1

0 0 1

1 1 0

| 0 1

0 0 1

1 1 1

a OR b

0 1

0 1 1

1 1 0

a NAND b

0 1

0 0 1

1 1 0

(a OR b) AND
(a NAND b)

a b a ^ b f(a,b)

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 0

f(a,b)

Universal gates

● NAND and NOR gates are universal
– Each one alone can reproduce all other gates
– Example: a AND b = a & b = !(!(a & b)) = !(a NAND b)

= (a NAND b) NAND (a NAND b)

0 1

0 0 0

1 0 1

a AND b

0 1

0 1 1

1 1 0

a NAND b

0 1

0 0 0

1 0 1

(a NAND b) NAND
(a NAND b)

Universal gates

● NAND and NOR gates are universal
– Each one alone can reproduce all other gates
– Example: a AND b = a & b = !(!(a & b)) = !(a NAND b)

= (a NAND b) NAND (a NAND b)
● Similarly: a AND b = !(!(a & b)) = !(!a | !b) = !a NOR !b =

 (a NOR a) NOR (b NOR b)

0 1

0 0 0

1 0 1

a AND b

0 1

0 1 1

1 1 0

a NAND b

0 1

0 0 0

1 0 1

(a NAND b) NAND
(a NAND b)

(a NOR a) NOR
(b NOR b)

Lab

● Part 2

Circuits

● Two main kinds of circuits:
– Combinational circuits: outputs are a boolean function of inputs

● Not time-dependent
● Used for computation

– Sequential circuits: output is dependent on previous inputs
● Time-dependent
● Used for memory

Computation

● Goal: identify circuits that perform useful computation
– Testing bits to see if they’re equal
– Selecting between multiple inputs
– Adding or subtracting bits
– Bitwise operations (AND, OR, XOR)
– Make them work on bytes instead of bits

Equality

Equality

a EQ b = (a & b) | (!a & !b)

Multiplexor (“selector”)

Multiplexor (“selector”)

MUX (a, b, s) = (s & a) | (!s & b)

Half adders

Half Adder

A B S C

0 0 ? ?

0 1 ? ?

1 0 ? ?

1 1 ? ?

Half adders

Half Adder

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

a + b = a ^ b + a & b

Half adders

Half Adder

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

sum

carry

a + b = a ^ b + a & b
sum carry

Abstraction

● Name circuits, then use them to build more complex circuits
– E.g., use bit-level EQ to build a word-level equality circuit:

Word-level 2-way multiplexer

Word-level 4-way multiplexer

How many selector
inputs would be
required for eight
data inputs?

How many data
inputs could be
supported using four
selector inputs?

Full adders

Full Adder

Connect full adders to build a ripple-carry adder
that can handle multi-bit addition:

Adder/subtractor

D=0: Addition
D=1: Subtraction

In two's complement: B – A = B + !A + 1

ALUs and memory

● Combine adders and multiplexors to make arithmetic/logic units
● Combine flip-flops to make register files and memory

Basic Arithmetic Logic Unit (ALU)

4-bit
Register

CPUs

● Combine ALU with
registers and
memory to make
CPUs

Computers

● Combine CPU with other electronic components and
devices (similarly constructed) communicating via buses
to make a computer

Big picture

● Basic systems design approach: exploit abstraction
– Start with simple components
– Combine to make more complex components
– Repeat using the new components as black box “simple components”

● This is true of most areas in systems
– CS 261: transistors → gates → circuits → adders/flip-flops →

ALUs/registers → CPUs/memory → computers
– CS 261: machine code → assembly → C code → Java/Python code
– CS 361/470: threads → processes → nodes → networks/clusters
– CS 432: scanner → parser → analyzer → code generator → optimizer
– CS 450: files + processes + I/O → kernel → operating system

Course status

● We’ve hit the bottom
– Or at least as far down as we’re going to go (logic gates)

—from here we go back up!
● Next week

– Sequential circuits
– CPU architecture

Suggestion: download Logisim (already installed on lap
machines) and play around with some circuits!

Lab

● Part 3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

