CS 261
 Fall 2017

Mike Lam, Professor

Combinational Circuits

The final frontier

- Java programs running on Java VM
- C programs compiled on Linux
- Assembly / machine code on CPU + memory
- ???
- Switches and electric signals

Aside: Relays

- From "Code" recommended reading:

Question: what happens if we connect the light bulb to the other contact?

Relay

Aside: Relays

- From "Code" recommended reading:

Regular relay
Inverted relay (NOT)

Aside: Relays

- From "Code" recommended reading:

Aside: Relays

- From "Code" recommended reading:

Relays in series (AND)
Relays in parallel (OR)

Digital hardware

- Digital signals are transmitted via electric signals by varying voltages
- 1.0 V (high) = binary 1
- 0.0 V (low) $=$ binary 0
- Use a threshold to distinguish

Digital hardware

- Digital signals are transmitted via electric signals by varying voltages
- 1.0 V (high) = binary 1
- 0.0 V (low) $=$ binary 0
- Use a threshold to distinguish

Transistors

- Transistors are the fundamental hardware component of computing
- Similar to relays; replaced vacuum tubes
- Smaller, more reliable, and use less energy
- Primary functions: switching and amplification
- Mostly silicon-based semiconductors now
- Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)
- n-channel ("on" when $\mathrm{V}_{\text {gate }}=1 \mathrm{~V}$) vs. p-channel ("off" when $\mathrm{V}_{\text {gate }}=1 \mathrm{~V}$)
- Mass-produced on integrated circuit chips
- For convenience, we abstract their behavior using logic gates

Logic gates

- Primary gates:

Logic gates

- Primary gates:

NAND

NOR

XOR

Important properties

- Identity: a AND 1 = a
$(a O R 0)=a$
- Constants: a AND $0=0$
- Also: a NAND $0=1$
(a OR 1) = 1
(a NOR 1) $=0$
- Inverses: a NAND 1 = !a (a NOR 0) = !a
- Also: a NAND a = !a
a NOR a = !a
- Double inverse: !!a = a
- Or: NOT(NOT(a)) = a
- De Morgan's law: !(a \& b) = !a | ! b
- Alternatively: !(a | b) = !a \& !b

Lab

- Part 1

Basic combinatorial circuits

- Circuits are formed by connecting gates together
- Inputs and outputs
- Link output of one gate to input of another
- Some gates have multiple inputs and/or outputs
- Textbook uses Hardware Description Language (HDL)
- Equivalent to boolean formulas or functions
- $f(g(x, y))$ means apply "operation f to the result of operation g on \times and y "
- In a diagram: $x, y \rightarrow g \rightarrow f$ (i.e., ordering is g first, then f)

Basic combinatorial circuits

- Circuits are formed by connecting gates together
- In a diagram: $x, y \rightarrow g \rightarrow f$ (i.e., ordering is g first, then f)
- NAND example: (similarly for NOR)
- Infix/boolean notation: a NAND b=!(a \& b)
- Function notation: NAND(a, b) = NOT(AND(a, b))

Basic combinatorial circuits

- Circuits are formed by connecting gates together
- In a diagram: $x, y \rightarrow g \rightarrow f$ (i.e., ordering is g first, then f)
- NAND example: (similarly for NOR)
- Infix/boolean notation: a NAND b=!(a \& b)
- Function notation: NAND(a, b) = NOT(AND(a, b))

Basic combinatorial circuits

- Circuits are equivalent if the truth tables are the same
- a XOR b = (a OR b) AND (a NAND b)
- XOR(a, b) = AND(OR(a,b), NAND(a,b))

XOR

Basic combinatorial circuits

- Circuits are equivalent if the truth tables are the same
- a XOR b = (a OR b) AND (a NAND b)
- XOR(a, b) = AND(OR(a,b), NAND(a,b))

Basic combinatorial circuits

- Circuits are equivalent if the truth tables are the same
- a XOR b = (a OR b) AND (a NAND b)
- XOR(a, b) = AND(OR(a,b), NAND(a,b))

Basic combinatorial circuits

- Circuits are equivalent if the truth tables are the same
- a XOR b = (a OR b) AND (a NAND b)
- XOR(a, b) = AND(OR(a,b), NAND(a,b))

a	b	$a \wedge b$	$f(a, b)$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

	0	1
0	0	1
1	1	0

(a OR b) AND (a NAND b)

Universal gates

- NAND and NOR gates are universal
- Each one alone can reproduce all other gates
- Example: \mathbf{a} AND $\mathbf{b}=\mathrm{a} \& \mathrm{~b}=!(!(\mathrm{a} \& \mathrm{~b}))=!(\mathrm{a}$ NAND b) = (a NAND b) NAND (a NAND b)

a NAND b

(a NAND b) NAND (a NAND b)

a AND b

Universal gates

- NAND and NOR gates are universal
- Each one alone can reproduce all other gates
- Example: \mathbf{a} AND $\mathbf{b}=\mathrm{a} \& \mathrm{~b}=!(!(\mathrm{a} \& \mathrm{~b}))=!(\mathrm{a}$ NAND b) $=$ (a NAND b) NAND (a NAND b)
- Similarly: a AND b = !(!(a \& b)) = !(!a | !b) = !a NOR !b = (a NOR a) NOR (b NOR b)

a NAND b

	0	1
0	0	0
1	0	1

(a NAND b) NAND (a NAND b)

a AND b

(a NOR a) NOR (b NOR b)

- Part 2

Circuits

- Two main kinds of circuits:
- Combinational circuits: outputs are a boolean function of inputs
- Not time-dependent
- Used for computation
- Sequential circuits: output is dependent on previous inputs
- Time-dependent
- Used for memory

Computation

- Goal: identify circuits that perform useful computation
- Testing bits to see if they're equal
- Selecting between multiple inputs
- Adding or subtracting bits
- Bitwise operations (AND, OR, XOR)
- Make them work on bytes instead of bits

Equality

Equality

Multiplexor ("selector")

Multiplexor ("selector")

Half adders

A	B	S
C		
0	0	$?$
0	1	$?$
1	0	$?$
1	1	$?$

Half Adder

Half adders

A	B	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Half Adder

$$
a+b=a^{\wedge} b+a \& b
$$

Half adders

A	B	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Half Adder

$$
a+b=a \wedge b+a \& b
$$

Abstraction

- Name circuits, then use them to build more complex circuits
- E.g., use bit-level EQ to build a word-level equality circuit:

Word-level 2-way multiplexer

A). Bit-level implementation

B). Word-level abstraction

Word-level 4-way multiplexer

How many selector inputs would be required for eight data inputs?

How many data inputs could be supported using four selector inputs?

Full adders

Connect full adders to build a ripple-carry adder that can handle multi-bit addition:

Adder/subtractor

In two's complement: $\mathbf{B} \mathbf{- A}=\mathbf{B}+\mathbf{~ A ~ + ~} \mathbf{1}$

ALUs and memory

- Combine adders and multiplexors to make arithmetic/logic units
- Combine flip-flops to make register files and memory

Basic Arithmetic Logic Unit (ALU)

CPUs

- Combine ALU with registers and memory to make CPUs

Computers

- Combine CPU with other electronic components and devices (similarly constructed) communicating via buses to make a computer

Big picture

- Basic systems design approach: exploit abstraction
- Start with simple components
- Combine to make more complex components
- Repeat using the new components as black box "simple components"
- This is true of most areas in systems
- CS 261: transistors \rightarrow gates \rightarrow circuits \rightarrow adders/flip-flops \rightarrow ALUs/registers \rightarrow CPUs/memory \rightarrow computers
- CS 261: machine code \rightarrow assembly \rightarrow C code \rightarrow Java/Python code
- CS 361/470: threads \rightarrow processes \rightarrow nodes \rightarrow networks/clusters
- CS 432: scanner \rightarrow parser \rightarrow analyzer \rightarrow code generator \rightarrow optimizer
- CS 450: files + processes + I/O \rightarrow kernel \rightarrow operating system

Course status

- We've hit the bottom
- Or at least as far down as we're going to go (logic gates) -from here we go back up!
- Next week
- Sequential circuits
- CPU architecture

Suggestion: download Logisim (already installed on lap
machines) and play around with some circuits!

- Part 3

